PHYSICAL REVIEW A

VOLUME 20, NUMBER 6

DECEMBER 1979

Logarithmic perturbation expansions

C. K. Au and Y. Aharonov*
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208
(Received 9 April 1979)

A method previously developed for one-dimensional nonrelativistic perturbation theory is extended to
three-dimensional problems. This method essentially consists of performing the perturbation expansion on
the logarithm of the wave function instead of on the wave function itself. It is shown that, for the first-
order corrections in problems that are not reducible to one dimension, this method is equivalent to that of
Sternheimer and to that of Dalgarno and Lewis. In the present approach, the higher-order corrections can
be obtained in a hierarchical scheme and there exists an isomorphisim between the equation for the first-
order correction and the equation for the ith-order correction. As an illustration of the technique developed,
the authors consider the hydrogen atom in an external multipole field and in two different spherically
symmetric perturbation potentials, 8(r —a) and e ~*. The last potential is related to the problem of the
screened Coulomb potential. By considering the 8(r — a)-type potential, two interesting sum rules are

obtained.

INTRODUCTION

In a previous paper' we have developed a new
approach to nonrelativistic perturbation theory in
problems reducible to one dimension. This meth-
od essentially consists of performing the pertur-
bation expansion on the logarithm of the wave func-
tion instead of on the wave function itself. In the
case of excited states in which the wave functions
possess nodes, the zeros need to be located and
factored out before the logarithm is taken. We
have shown in Paper I that with this technique all
interesting physical quantities, namely, the cor-
rections to the wave function, energy, and the no-
dal positions, are expressible in exact quadrature
in a hierarchical scheme, to all orders in pertur-
bation theory. However we are unable to achieve
the same results in three-dimensional problems
that are not reducible to one dimension.

In this paper we extend our technique to three-
dimensional problems. In doing so, we establish
contact with the previous works of Sternheimer?
and Dalgarno and Lewis,3 whose techniques have
been extensively and successfully exploited in
many calculations in the past three decades.? As
we shall show, the quantity f(») that Dalgarno and
Lewis introduced in their classic paper?® relates"
simply to the first-order correction to the loga-
rithm of the wave function.

The scheme of the present paper is as follows.
In Sec. I we establish the hierarchy of equations
for the corrections to the energy and the logarithm
of the wave function, to all orders in perturbation
theory, and establish the isomorphism between
the equation for the i*™ order correction and the
equation for the first-order correction. In Sec. I
we show that the first two equations in our hierar-
chy reduce to the Sternheimer equation. In Sec.
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IO we show that our first-order equation is equiva-
lent to the Dalgarno- Lewis equation. In Sec. IV we
obtain the first-order correction to the wave func-
tion and the second-order energy shift for a hydro-
gen atom in an external multipole field. In Sec. V
we discuss the problem of the hydrogen atom in
two different spherically symmetric perturbation
potentials, (> — a) and ™", We obtain two sum
rules in the problem with the 5 — a)-type poten-
tial. The solution to the e™®" potential is related
to the solution of the screened Coulomb potential.
Finally, in Sec. VI we make some concluding re-
marks.

I. PERTURBATION SERIES ON LOGARITHM OF
WAVE FUNCTION

In the present paper we only consider ground
states in which the wave function contains no nodes.
Along the same lines as in Paper I we define

P(x) = exp[- Gx)], (1.1)
and

2x)=VG(x). (1.2)
Putting this into the Schrodinger equation

HY(x)=(—5V2+ V +AV,)Y=EY , (1.3)
we obtain

divg—g*=2(E - V,—2V)). (1.4)

As in Paper I we expand G, g, and E as power ser-
ies expansions in A:

G=Gy+AG, +\*Gy+°" , (1.5)
§=§0+Xél+h2§2+"' ’ (1.6)

and
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E=E +\E +\2E,+*** , (1.7
where
¥, =exp(-G,) (1.8)

and E are the unperturbed wave function and the
corresponding eigenenergy. On comparing coef-
ficients of various powers in A in Eq. (1.4), we
have the following hierarchy of equations:

div §,-82=2(E,— V), (1.9)
divg, —28,-8,=2(E, - V), (1.10)
div -g.z - Zgo * éz =2(E, +71.'§1 ° EL) , (1.11)

and in general for 7> 2

i1
divE - 28, 5 -2 (E, 5%, 5 ) (1.12)
7=l
We observe the following interesting feature in
this hierarchy of equations. Equation (1.12) has
the same structure as (1.10), which gives the cor-
rection to first order. Even if one cannot solve the
differential equation in (1.10), one can always
solve for E, and G,, and hence g, by the ordinary
Rayleigh-Schrddinger method. Therefore we see
that the i'™ order correction to the energy and the
logarithm of the wave function may be obtained as
in a first-order perturbation calculation, provided
that the perturbative potential V| is replaced by
~32008; Buye
244j=15§ 7

II. CONNECTION TO STERNHEIMER’S METHOD

In this section we establish the connection to
Sternheimer’s method.? First we observe that as
in Paper I the square of the unperturbed wave func-
tion p =¥ =exp(-2G,), constitutes an integrating
factor for Eq. (1.10) and the subsequent equations
in the hierarchy. Multiplying Eq. (1.10) by this
factor, we get

div(,e™%) =2(E, - V,)e 2%. 2.1)

On integrating this over all space and using
Green’s theorem and the fact that ¥, vanishes at
infinity and is normalized, we obtain

E1=fV1pd31’, (2.2)

in agreement with the ordinary Rayleigh-Schro-
dinger theory. Applying the same integrating fac-
tor up the hierarchy, we obtain

i-1
Ee""‘f(’é‘Z%; * gi-j);pdar. 2.3)
j=1

Next we show that Eqgs. (1.10) and (1.9) together
yield the Sternheimer equation.? We first observe
the relation between the first-order correction to-
the logarithm of the wave function, G,, and the

first-order correction to the wave function, ¢,.
This can be obtained by expanding both sides of
Eq. (1.1) in powers of \. We get

Y, ==G,e"%=_G¢,. (2.4)
Taking the Laplacian of G,e™%, we get

V*(G,e™%) = {v2G, - 2VG, - VG,

+G,[(VG)? = V3G Jle 0. (2.5)

On using Eqgs. (1.9) and (1.10) in (2.5), we have

V3(G,e™%)=[2(E, - V,) - 2(E,— V,)G,]Je %, (2.6)
which can be rearranged to give

[V2+2(E, - V)]G, C0=2(E, - V,)e o 2.7
or

—[VP+2(E, - V)]d,=2(E, - V)Y, , (2.8)

which is the Sternheimer equation.

Using the isomorphism established at the end of
Sec. I, we arrive at the following generalized
Sternheimer equation:

[V2+2(E,- V)IG4y=2(E, - V)Y, , . (2.9)
where V,, the “effective” i*"
potential is given by

order perturbation

i-1
v, =_§;§j - (2.10)
=1

Cne may look upon Egs. (1.9) and (1.10) as a
means of decoupling the Sternheimer equation.
This decoupling enables g,, which is no longer a
vector function in the case of one dimension,* to
be integrable in exact quadrature. The first-order
correction to the logarithm of the wave function,
G,, can be obtained by integrating this known func-
tion g,. In the case of three dimensions, because
of the vectorial nature of the function g, = VG,,
such simple situations no longer exist and we must
turn to other methods. This well be discussed in
Sec. IV and V.

III. CONNECTION TO METHOD OF DALGARNO
AND LEWIS

In this section we establish the connection be-
tween our work and the work of Dalgarno and Lew-
is.® In their classic paper Dalgarno and Lewis in-
troduced an ingenious mathematical technique that
allows one to obtain certain sum rules without the
use of either the Green’s function or an explicit
sum over the intermediate states. They showed
that for a given function () the following sum rule
can be written® (the factor of 3 is inserted on the
LHS of 3.1 because the Hartree is taken as unity
here, where Dalgarno and Lewis take the Rydberg
as unity in their work):
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1 5~ 0Inim)Xmlnl0)
P> E,-E}

={0Ifn10)~ Q1f10)QIn10), (3.1)

where the function f satisfies an inhomogeneous
second-order vector differential equation:

21 + (V) +9o(V%F) = 9. (3.2)

We show that f is trivially related to the first-ord-
er correction to the logarithm of the wave function.
Hence we shall understand why, in solving the in-
homogeneous equation (3.2), the particular solu-
tion that goes to zero as 7 goes to zero must be
taken. In this sense we can consider part of our
present work as a supplement to the work of Dal-
garno and Lewis.

On dividing Eq. (3.2) on both sides by ¢,, we ob-
tain

m#0

(V%) +2(Vf) - V(ing) =n. (3.3)
From the definition of G we see that
Ving,=-g,. (3.4)

For simplicity we consider the case in which the
first-order energy shift E, is equal to zero, since
one always has the freedom to redefine the pertur-
bation n as n’=n- 0|7l 0). This transformation
will leave both sides of Eq. (3.1) invariant. Under
this renormalization of the perturbation, Eq. (1.10)
becomes ' ’

V3G, + 296, « V(Inyy) =~ 2V, (3.5)
or
V(-1G,) +2V(-1G,) - V(Indy)=V, . (3.6)

On comparing Eq. (3.3) with Eq. (3.6), we immedi-
ately identify the Dalgarno-Lewis function f with
—-+G,, which is one-half the first-order correction
to the logarithm of the wave function.

Having thus established this identification, we
see why the solution to the inhomogeneous equa-
tion (3.3) must vanish as the perturbation vanishes,
since one should not have any correction to the un-
perturbed wave function in the absence of any per-
turbation.

IV. H ATOM IN MULTIPOLE FIELD

Although this problem has been treated to first
order by Dalgarno and Lewis, we would like to in-
clude it here for reasons that go beyond complete-
ness, The important point is that we now have a
means of directly calculating the first-order cor-
rection to the wave function, given any perturba-
tion. By the same token, with the isomorphism
that we established at the end of Sec. I, we now
have a means of calculating the 7" order correc-
tion to the logarithm of the wave function as if we

are calculating the first-order correction by mere-
ly replacing V, with _;—Z;;}§, - g;-;. The i*"_order
correction to the energy is computed according to
Eq. 2.3).

We now consider a hydrogen atom in a 2! th-ord-
er multipole field. The perturbation V, is then
written as

V,=Q'p,. (4.1)

The quantity @, is a measure of the strength of this
interaction. Under this perturbation, Eq. (1.10)
becomes

V2G, - 2VG, - VG, +2Q,r'P,=0. (4.2)
For a hydrogen atom in its ground state,

G,=7+const. (4.3)
and hence ‘

VG,=7. (4.4)

We next see that G,(») must be of the form G,()
P,(cos 6) and so we redefine

G,(t)=[R(r)/r]P,(cos 0). (4.5)

On substituting Eqs. (4.4) and (4.5) into (4.2), we
obtain the following inhomogeneous equation for R:

R'"-2R'— [l +1)/¥*]+2R/¥v+2Q »'*=0. (4.6)
The particular solution for this equation is
R=Q,[r"/1+7"/01+1)], (4.7)

which goes to zero as @, goes to zero, that is,
when the perturbation is removed, as it must be.
From Eq. (2.4) we have a simple analytic expres-
sion for the first-order correction to the wave
function under this perturbation:

U= =Q [ /l+r*/(1+1)]P(cos 8) (/N ).  (4.8)

Next we turn to the evaluation of the second-order
energy shift, This is a straightforward applica-
tion of Eq. (2.3). We obtain

E,=—Q3[(20+2)1(1+2)/1(+1)22%2], (4.9)

This is in agreement with the earlier results of
Dalgarno and Lewis, 3 Bell, ® and the static limit
of the general expression for the dynamic multi-
pole polarizability of hydrogen obtained earlier by
one of us.®

Having thus obtained G,, we have g, and we can
proceed to calculate G, in our hierarchy, since
g, * g, can then be replaced by a sum of multipole
potentials with suitable 3-j symbols. The result-
ing equation, which is derived from (1.11), can
then be solved in the same format as Eq. (4.2),
since this equation is linear. We have thus estab-
lished a method to solve the hydrogen atom in an
external multipole field to all orders in perturba-
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tion theory. Details of such calculations may be
presented elsewhere.

V. H ATOM IN SPHERICALLY SYMMETRIC POTENTIAL

In this section we would like to consider a hydro-
gen atom in a spherically symmetric potential. In
this special case the Schrédinger equation, even
with the inclusion of the perturbation potential, is
reducible to one dimension. However, the radial
equation is now defined in the interval (0,«). We
show the necessary modifications to the techniques
we previously developed for the one-dimensional
problem in which the Schriédinger equation is de-
fined in the interval (-« ,«). We also carry out
explicit calculations for spherically symmetric po-
tentials of the type 6(7 — a) and exp(— a7). While
superficially these potentials seem academic, the
calculations we perform here can be modified to
be applicable to the case in which we have a hard-
core or a screened Coulomb potential. These sit-
uations are obviously interesting in the under-
standing of muonic atoms.

As is well known, for a hydrogen atom in a spher-
ically symmetric potential the radial part of the
wave function is separable and the normalization
condition is .

f‘rzéidr= 1, (5.1)
o]

and 7®, vanishes at both 0 and . So we can write
r®,as e"®and r®, ,as e™%, where &, , is the un-

perturbed radial wave function. On expanding G as
a power series in X as before, we have

In®,=In®, ;= AG, = X°G,+ -+ . (5.2)

Thus all our previous results developed for the
one-dimensional problem apply and perturbation
calculations on G,, G,,... can be carried out as
before. The only modifications are that the lower
limit is raised from -« to 0 and

p=e?%=1r92 (5.3)
We now consider a perturbation of the form

V,=6(r- a). . (5.4)
The first- orde.r energy shift under this perturba-
tion is

E =4d%™, (5.5)
Then according to Eq. (18) of Paper I we have

£,(r)=G{(7)
= _2a2e'?“{(1+ 2r+27%) —e*[1 -6 - a)]}, (5.6)

where 6(7 - a) is the step function. The second-

order energy shift can be calculated according to
Eq. (23) of Paper I, except that the lower limit of
integration is raised from —« to 0:

a,2r
E,=-8d% "‘“(f %‘g‘ [Q+27r+ 2%~ 1P dr
0

+fw(1"-—2:;ﬁ2—)-2—e'2'dr> (5.7)

=_8a'e™%F(a). (5.8)

The integrals on the right-hand side of Eq. (5.7)
are regular and expressible in terms of the expo-
nential, hyperbolic sine and cosine (Chi) integrals,
Ei, Shi, and Chi, with argument a. However, be-
cause of the number of Ei, Shi, and Chi functions
involved, we prefer to leave the right-hand side

of Eq. (5.7) in terms of these integrals and repre-
sent it by F(a). We refer the interested reader to
Gradshteyn and Ryzhik” for details. On compar-
ing E, thus obtained with the usual second-order
energy shift from the Rayleigh-Schrédinger theory,
we obtain the following sum rule8:

[Ris(@) Rys@P 4 o 4 -
nzﬂ_._iE"__ﬁ_a =8a*e™*F(a), (5.9)

where R, ¢(a) and R, 4(a) are the radial wave func-
tions of the ground state and the nS excited states,
evaluated at a. An equivalent form of Eq. (5.9) is

E [Rps@P 2e"F(a).

= 5.10)
n#l En"Els (

One can generate a similar sum rule by consid-
ering the following perturbation:

V,=8(r —a,)/p, = 6(r -ay)/p,, a,>a,, (5.11)
where

p =ai[R, s(a))]* (5.12)
and

P2 =3[Ry 5(a,)]*. (5.13)
For this perturbation, E, =0 and

g,(r)=€’"/2v* for a, <7 <a, (5.14)

=0, otherwise.

Repeating the same technique that we used in ob-
taining Eq. (5.10), we arrive at the following sum
rule®: ‘ .

LZ [e“R ,(a,) - e®2R,5(a,)]?

n#l Ens"Els

(5.15)

. e?%2 ) e®1
= (EL(Zaz)- T‘g) - <E1(2a1) - —2-5:),
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where we have explicitly expressed the result in
terms of the exponential integral function” Ei.
Next we look at a perturbation of the form

V,=eer, (5.16)

This particular potential is interesting because any
potential of the form E,’,ﬁo(a,,r")e""' can be obtained
by suitable differentiation. Moreover we observe

[+ - 1_e'(¥"'
J- e “da= R
o 7

(5.17)

which is the difference between a naked and a
screened Coulomb potential. For an electron in a
screened Coulomb potential one can always treat
this difference as a perturbation. Thus solving the
problem with the potential V, as given by Eq. (5.16)
is equivalent to solving the screened Coulomb
problem. With this V, the first-order energy shift
is found to be

E,=8/@2+a)*=8/p°. (5.18)

The derivative of the first-order correction to the
logarithm of the wave function, g,, is found to be

-4

g1=7ﬁ—3[(1+ 2r+27%) - 1+ Br+5p°r%)e ],  (5.19)

where we have defined 8 as 2+ a. The second-ord-
er energy shift can be calculated as indicated in
Paper I, and we obtain

~32 r~e?"
E,= - [(1 + 27+ 27%)
2= 07'[

- (L+Br+3p%e ™ Pdr. (5.20)

This integral is a regular function of @ and it can
be handled by breaking the integration into two
parts, [5=[¢+ [, where € is a small number.
Then the integrand in the.first integral can be ex-
panded in powers of 7 and the first integral can be
performed exactly. The second integral is expres-
ible in terms of the Whittaker function.7 Of course
this process is independent of the choice of the
value of €. The higher-order corrections can then
be obtained under the hierarchical scheme we dis-
cussed in Paper I. With these solutions expressed
as a function of @, the problem of the screened
Coulomb potential can be solved by suitable inte-
gration of these solutions over the parameter a.

VI. CONCLUSION

In this paper we have approached nonrelativistic
perturbation theory by using an expansion on the
logarithm of the wave function. We have shown

that, to first order, this is equivalent to the meth-
od of Dalgarno and Lewis.® Since the first-order
correction to the wave function is equal to the
product of the unperturbed wave function and the
first-order correction to the logarithm of the wave
function, our present method is also equivalent to
that of Sternheimer.? On going to higher orders,
we discover a hierarchical system of equations,
each of which is isomorphic to the first-order
equation. In the case of one dimension, as we have
shown in Paper I, an integrating factor exists
which enables the problem to be solvable in exact
quadrature. As an illustration we have considered
in Sec. V the problem of the hydrogen atom in two
different spherical potentials, 6(» — a) and e ",

By considering the former, we discover two sum
rules® as given by Eqs. (5.10) and (5.15). As we
have pointed out in Sec. V, the solution corres-
ponding to the perturbation potential e *” leads, by
suitable integration, to the solution corresponding
to the potential (1 —e ™ */#). Thus in principle we
have established a method to solve the Schrédinger
equation for a charged particle in a screened Cou-
lomb potential, which is equivalent to the Schr§-
dinger equation for a hadron in a Yukawa-type po-
tential. We hope to return to this discussion in a
future paper.

In the case in which the perturbation does not
have spherical symmetry, our treatment of the
first-order correction is equivalent to that of Dal-
garno and Lewis. However our work has gone be-
yond that of Dalgarno and Lewis'in our discussion
on the higher-order corrections. We have estab-
lished an isomorphism between the equation for
the i*"_order correction to that for the first order.

It should be noted that there also exist varia-
tional methods'®!! in the calculation of matrix el-
ements. In systems in which the differential equa-
tions from the Sternheimer and Dalgarno-Lewis
method prove to be too difficult to solve, such var-
iational methods may be preferred. Nevertheless
the extension of these variational methods to high-
er orders is not trivial. It is conceivable that the
isomorphism which we have established in this
paper between the first-order correction and a
higher-order correction would make the extension
of these variational techniques to higher order less
tedious. However we have not investigated its
feasibility.
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