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Hydrogen atom in a static multipole field
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It is shown that the method of logarithmic perturbation expansion can be used to obtain the corrections
to the energy and the logarithm of the wave function of the ground state of a hydrogen atom in a static
multipole field, or a linear combination of static multipole fields to any order in perturbation theory.

The problem of an atom in a static multipole
field is often encountered in both atomic and solid
state physics. The simplest of such problems,
that of the Stark effect in the hydrogen-atom, has
recently been investigated in detail to arbitrarily
higher-order corrections in perturbation theory.1
In parabolic coordinates, this problem is still
separable, and reduces to an “eigenvalue” prob-
lem of the separation constants.? A number of
authors® have recently shown that by considering
the logarithmic derivative of the wave function
instead of the wave function itself, the separated
equations in parapolic coordinates are reducible
to the Ricatti form. This reducibility can be ex-
tended to all eigenvalue problems of the Sturm-
Liouville type. The perturbative solution to the
one-dimensional wave equation in the Ricatti form
has been discussed by Price,! Polikanov,’ the
present authors,® and Turbiner.” We have recently
given the name “logarithmic perturbation expan-
sion” to this perturbative approach to the eigen-
value problem and have extended this technique
to nonrelativistic problems in three dimensions.

In this paper, we would like to show that the
technique of logarithmic perturbation expansion
can be applied to the problem of the ground state
of the hydrogen atom in a static multipole field
to obtain the corrections to the energy and the
logarithm of the wave function to all orders in
perturbation theory. We shall show that to each
order, the correction to the logarithm of the
wave function is obtainable as the solution to a
second-order differential equation, for which a
closed form exists and that the correction to the
energy is obtainable from the lower-order cor-
rections to the logarithm of the wave function with
suitable vector coupling coefficients. Since there
exists a one-to-one correspondence between a
wave function and its logarithm, the existence
of a closed-form solution to the correction of the
logarithm of the wave function to each order im-
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plies the existence of a closed-form solution to
the correction to the wave function to each order.

To make this paper self-contained, we give
here a concise discussion of our technique of
logarithmic perturbation expansion. Let iy(x),
E,, ¥(x), and E denote the eigenstates and eigen-
energies of the unperturbed Hamiltonian Hy and .
the total Hamiltonian H, respectively, where
H=H,+aV;, V| being the perturbation. We next
define

¥(x) = exp -G ()] (1)
and
g(x)=VG(x). (2)

We shall set m =h=aq,=1, where q, is the Bohr
radius. Then the Schrodinger equation becomes

divg —g?=2(E -V, -aVy). (3)

On expanding G, é, and E as power series in «,

G=Gy+aG, +a’Gy+---, (4)
g=g+ag ta’gy+ee-, (5)
E=E,+aE{+aEy++«.-, (6)

and comparing coefficients of the various powers
of a in Eq. (3), we arrive at the following
hierarchy of equations:

divgo -8 =2(E,~V,), (7
diveg, - 28, -8, =2(E; - V), (8)
and
i-1
div-g.i—zgo'éi’;Z(Ei'*'%jz;-éj'éi-j) (9

for i>2. The factor — 232} g; g, ; in Eq. (9) can
be looked upon as the “effective” ith-order per-
turbation potential and hence Eq. (9) is similar

in form to Eq. (8), which gives the first-order
corrections. The square of the unperturbed wave
function
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p(x) =vj(x) =e 20 (10)
serves as an integrating factor in Eqgs. (8) and
(9):

div( g; e 2¢0)=2(E, - v,) e , (11)
On integrating this over all space, and using

Green’s theorem and the fact that y, vanishes
at infinity and is normalized, we obtain

E,:f_V‘p, (12)
where
i
Vi= 5.8 8y, forizl. (13)

i=1

Since V{ and G, and hence éo and p are known,
Eq. (8) reduces to a linear second-order inhomo-
geneous vector differential equation for the function
G,. After G, is solved, g, is known and Eq. (9)
can be solved for =2 in the same spirit as in
Eq. (8), and so on up the hierarchy.

In this paper, we wish to show that, for a
hydrogen atom whose unperturbed state is the
ground state, when V{ has the form

V= E QL7 Yy, (14)
L>»12)

the hierarchy of equations can be solved for all
i. Since Egs. (8) and (9) are linear it is sufficient
to consider a perturbation just of the form

V1=QL11’L‘y‘0, LZZ. (15)

The first-order energy shift corresponding to this
perturbation potential is easily obtained as

(@ +1!

W 2L+l T ) (16)

For a hydrogen atom whose unperturbed state is
the ground state

G,=7 +const (1m
and so
8, =VGy=7, (18)

and Egs. (8) and (9) reduce to
VZGi-2%Gi=2(Ei—V,), iz1. (19)

Equation (19) indicates that G; is indeterminate
up to an additive constant. This additive constant
to the logarithm of the wave function is a multi-
plicative constant to the wave function, and hence
can be fixed by normalization. We shall there-
fore ignore any additive constant in the solution
of G; but require the wave function be normalized.
Since

L2

a2
viG = 57 r6) =" G, (20)

ﬁl»—t

where L is the orbital-angular-momentum vector
operator, for a perturbation potential V| as given
in Eq. (15) we seek a solution of G; in the form

Gle( ;)z[Ru(?’)/’V]'ymES(L';)(yxo- (21)

We shall later show that all higher-order effective
perturbation potentials as given by Eq. (13) can be
cast into the form in Eq. (14). The linearity of the
differential Eq. (19) thus implies that the solution

to G; can be sought in a manner similar to that

of G,. Putting Egs. (21) and (15) into Eq. (19) and

making use of Eq. (20), we arrive at the following

differential equation for R, ;:

RYy-2rp, - (- 2)e,,
+2Q ("r“ —1%2—& o,0> =0. (22)
We seek the solution in the form
Ruy=2az'r". (23)

Equation (22) then reduces to the following indicial
equation: ,

[(m+2)(n+1) =1l +1)] a2}, - 2nat!

nid

+2Q1;{0, 1.
The normalizable solution can be obtained as

(L =1+1)I(L +1+2)! (n—2)12"
Qus 212(L +1)! (n+)(n-1-1)!

Ll
(L+22n>1+1+206,)

- +2)1/251]6,,6,,}=0. (24)

a, =

0, otherwise.
(25)

It may be noted that when [ =0, af® is arbitrary.
But since a}’ Y, that enters G, is an additive
constant, a{’ can be absorbed into the undeter-
mined additive constant mentioned earlier in the
solution of G{, whichcanbe fixed by normalization.
It is then stralghtforward to show that
L1.gl'V = VGE - VGE'Y can be written as

ZL1 5Ll

gL B = Z [1 +(_1)l+l'+)u]

A
X QYL ,T,L 1 Yy, (26)
where the summation limit for x is from 0 to

I+1’ and that of A is from (I +1'+28;)+26;.,
-2)toL +L’,
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A42-1-26 1.9
xA).(L’l’LI:l/)= %Tn(L,l,L',l',A,A)a,J{flal;\'_f,;3, (27)
n=1428 7
T L,L,L",)lI'x,A)=(n=1)(A-n-1"+2)@,@, V(I +1,I'+1,1;0,0)-¢, €. V(I +1,l' +1,x;1, -1)]
+r+l+1)(A-n+1"+3)®;®; V(I -1,1"=1,x;0,0)-D;D;. V(I~-1,1"-1,x;1,-1)]
+m=UNA-n+1+3)@;®; V(I+1,1'=1,2;0,0)—€,D,.V(I+1,1'=1,x;1=1)]
+(n =) A-n+1+3)@; ®, V(' +1,l-1,3;0,0)-€,. D, V(' +1,1 -1,x;1,-1)], (28)
T
_ l+1 : We write
&= TR @ T (29)
)/ G2: ;gfxx'ym ’ (36)
&= TR+ D~ D72 (30)
I _pl
=( g+2)@+1) \'? o) Sm=Ran/7, (37)
PU\(2 +3) (21 +1 ’
( ¢ ) Rh=zarf'm7’"- (38)
o :( l(l -1) )1/2 (32) n
\@+)a-1) Then the set of coefficients a,’** is given by Eq.
(25) except @ ;; has to be replaced by @3,. With
and where . G, thus obtained, one can get gz gl and hence V,
. " which is again a linear combination of the type
VL xm,m’) = f‘y””‘y" m Yacmmy (33) of potential we have considered in V,, and we can

is the vector coupling coefficient.

By now, we have all the results necessary to
obtain the perturbative solution to the problem
of the ground state of hydrogen in a linear com-
bination of static multipole fields. The “effective
potential V, is a linear combination of the type
of the potential V{ which we consider in Eq. (15).
In particular, only the A =0 term in the sum in
Eq. (26) will contribute to the next-order energy
shift. For example, when V, =@, 7%%Y,,, the
second-order energy shift is given by

3

By= Gayrr S @40 BB )

2= (47r)

and the “effective” second-order perturbation
potential is given by

Vy==2 QWL,L,L,0)7r Y, . (35)
AX

Because of the linearity of the differential Eq.
(9), G, can be solved in the same fashion as G;.

write

V3= Z QM"’ Yo (39)

and G;3 can be obtained in the same manner as
Gy. The third-order energy shift E4 is given by

T e A (40)

Obv1ously, this process can be continued to ob-
tain G; and E; to all orders.

Lastly, for L = in V4, our results for the sec-
ond-order energy shift are in agreement with
those of Dalgarno and Lewis,’ Bell,!” and the
static limit of the dynamic multipole polariza-
bility."
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