Refleree's report on #311-2 "Defending the Time-Symmetrized
Quantum Theory"

I wish I could recommend this paper for publication. The idea of the
time-symmetrized interpretation of quantum theory, indeed of any
version which uses two state vectors rather than one, is very
intriguing, and it would be welcome to have any novel interpretation
to discuss. There are some obscurities in the two-state theory, and an
article which would clarify those obscurities would be useful.
Unfortunatelyy this paper does not serve to make the situation
clearer. Rather, the author seems to refuse to grant the gist of the
objections being made, and never clearly addresses them. The net
result is more confusion rather than less.

Let us make the problem clear. At the heart of the theory is a
formula. The formula takes as input three items: a state vector
determined by a measurement result at an earlier time tl, a state
vector determined by the result of a measurement at a later time t2,
and a projection operator associated with an intermediate time, t,
between tl and t2. The projection operator is associated with a
particular outcome of sort of measurement. From these three items,
the theory calculates a number, which it calls a probability. The
question which must be addressed is: what is this number supposed

to represent? Is it a) the probability that a measurement of the right
sort, which actually took place a t, had the given result b) the
probability that the measurement, which did not take place a t,
would have given that result had it been performed or c) none of the
above?

The difference between a and b is clear, but to make it absolutely
patent, consider an example. A friend of mine is coming to visit me.
He calls at tl to tell me he is on the way. I know that he will either
take the -train or the bus. There are two cars on the train, and my
friend always chooses at random between them. I hear over the

radio at t that there has been a train crash, that only 10 of the
passengers were left uninjured, and that 9 of these were sitting in
the last car of the train. At t2 my friend appears uninjured at my
door. Now we must distinguish two questions.

Question 1) If my friend was on the train, what is the probability
that he was sitting in the last car? Answer: .9.

Question 2) My friend turns out not to have taken the train. But what
is the probability that had he taken the train, he would hawve been
sitting in the last car? Answer: .5.

Observation: The fact that my friend is unhurt at t2 is critical for
calculating the answer to Question 1. It is entirely irrelevant for
calculating the result of Question 2. If my friend actually took the
bus, his health at t2 has no bearing on the question of whether he
would have sat in the last car had he taken the train. So asking for
the likelihood of P given Q, and for the likelihood of P if Q had been
the case (when it was not) are two quite different things, yielding
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different answers which depend on different data.

The ABL rule which lies at the hear of this interpretation is the
correct rule for answering questions like question 1. As such, it is
uncontroversial: indeed, it is exactly the rule one gets from standard
guantum theory together with Bayes' rule. Because of this latter fact,
the rule itself gives us no insight into an interpretation, as it is part
of

the standard interpretation. On the other hand, the ABL rule

seems just incorrect as an answer to gquestions like 2. Using it there
would be just like thinking that my friend's health, given that he did
not take the train, somehow makes it more likely (or even certain!})
.that he would not have been hurt if he had taken the train. And that
is just wrong. Standard quantum theory, though, does provide

answers to questions like 2, giving probabilities for results of
counterfactual measurements. These probabilities depend only on

the one usual state function.

The critics which this paper aims toc respond to try repeatedly to
make this simple distinction, and to point out that the ABL rule does
net apply tc counterfactual situations. Instead c¢f responding

ing directly

to these objections, the author claims not to understand the meaning
of them, in particular claiming that one cannot make sense of
ascribing prokabilities to measurements which did not occur. The
author repeats several makes it more likely {(or even certain!)

that he would not have been hurt if he had taken the train. And that
is just wrong. Standard quantum theory, though, does provide

answers to gqguestions like 2, giving prcbabilities for results of
counterfactual measurements. These probabilities depend only on

the one usual state function.

The critics which this paper aims to respond to try repeatedly to
make this simple distinction, and to point out that the ABL rule dces
not apply to counterfactual situations. Instead of responding directly
tc these cbjections, the author claims not to understand the meaning
of them, in particular claiming that one cannct make sense of
ascribing probabilities to measurements which did not cccur. The
author repeats several time the dictum that "unperformed

experiments have no results®. But the issue is not what results an
unperformed experiment had, but the probability for various results
had the experiment been performed. Standard guantum theocry

provides these, as the author is aware. The author's repeated claims
to be unable to assign any meaning to these counterfactuals is
extremely unuseful here, and conveys the sense that no real
communication is going on.

What, then, is the author's own position. It is, unfortunately, hard to
say. One could say, of course, that the rule is meant only to apply to
situations where an intermediate measurement was made, and one is
calculating the probability of various outcome based both on the
outcomes of antecedent and subsequent measurements. Then the

rule is correct, uncontroversial, and, as yet, metaphysically
uninteresting. If this were the position, then the author ought to
simply reject talk of counterfactuals about what would have

hapntrary to fact"? There are alsment been made. But the author
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continues to want to talk about counterfactuals. It is very hard to
know quite what 1is meant though.

For example, on the simple question of whether the relevant
probabilities are for results of experiments which were actually
performed or results of experiment had they been performed, no

clear answer is forthcoming. The insistence on talking about
counterfactuals suggests the latter, but then cne is mysteriously told
that "I challenge the interpretation according to which counterfactual
statements are necessarily about events which do not happen" (p.

16) . This is simply unintelligible: what does the author intend by
"counterfactual" if not "subjective conditiocnal whose antecedent is
contrary to fact"? There are also the mysterious phrases "except for
the measurement at the time t if performed' (p. 12) and "except, may
be, a measurement at time t" (p. 18), which suggest that one is
somehow unsure whether or nor a measurement occurred at t, and

hence unsure whether one is talking about the likelihood that an
outcome actually occurred, or that it would have occurred had a
measurement been wmade. One might be sc unsure (as I might be

unsure if my friend took the train or not), but one then needs
subjective probabilities for the occurrence and non-occurrence cf the
measurement to get any numbers out at all. Given the subjective
probabilities, one would get numbers in the usual way.

The author suggests a way of evaluating counterfactuals which holds
the results at both tl and t2 fixed. If this is a true counterfactual,
then this simply disagrees with how we do evaluate them, just as wmy
friend's health having taken the bus is not held fixed when
considering what would have happened to him had he taken the

train. If we made measurements at tl and t2 and no measurement at

t and got certain results, then we can, of course ask: if we had made
the same measurements at tl and t2 and as well a measurement at t,
and if the results at tl and t2 had been the same, then what are the
probabilities of various cutcomes at t? And standard gquantum theory
will give an answer using the ABL rule. But this answer is not what
we would be looking for if we ask, in normal circumstances, the
probabilities for various results had I made the measurement.
Similarly, if my friend did not take the train, I can ask for the
probabilities that he would have been in the last car had he taken
the train and arrived uninjured. But this is not the probability that
ne would have been in the car had he taken the train full stop. The
rather nonstandard counterfactual can be made sense of, and maybe
chis is what the author intends. But since standard quantum theory,
using the standard rules and Bayes's theorem will use the ABL rule
nere, so invoking the rule does nct point us to an alternative
interpretation.

As this guestion about interpreting the ABL rule is the center of the
vaper, and as the author's positicn is cbscure, I could not recommend
zhe paper. There are alsoc some other anncyances. There are scme
zechnical errors: formula 1 on p. 2 is incorrect (it should not ke
squared) as is formula 5 on p. 10 (the sin should be raised to the
Zourth power).

The guotation on p.8 draws a distinction between the orthodox and
standard interpretations of quantum theoxry, but it is impossible to
—ell what the orthodox interpretation is. The author thinks the
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guotation is important, but then uses "orthodox or standard" on the
page in a way to suggest that they are interchangeable, and both
mean what the earlier passage means by "standard".
The phrase "all possible measurements" on p. 9 is ambiguous over
just the main issue (is this merely epistemic or ontoclogical
possibility) .
The calculation on p. 14, meant to show the compatibility of the ABL
formula with standard quantum theory, is unintelligible from the
point of view of the ABL interpretation. The calculation dcoes show
that standard quantum, together with the probability calculus
{(equation 6) yield the ABL rule for a certain situation. But this only
works by using standard quantum theory (not the ABL rule) for
prob{1f) and prcb (2f). If the prcject is to systematically replace the
standard probability calculation with ABL calculations, this fails.

]
The author consistently uses the phrase that the measurement at
time t2 "find(s) the system at t2 in the state |psi2s»" (e.g. p. 3). The
terminology "finds the state" is tendentious. In the standard theory,
the system is typically not in |psi2» until after the measurement, and
so is not "found to be" in that state, but comes to be in that state.
This, of course, makes the propagation of |psi2> backwards in time
from t2 look physically meaningless. The author may well disagree with the
stanrdard interpretation, but the gquestion is not decided
simply by adopting one set of terminoleogy. And the terxminclogy
obscures some major issues, e.g. are there collapses in the two-state
formalism, and if so, when do they occur?
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Reply to the comments of the referee

I am encouraged by the referee statement that “it would be welcome to have any novel
interpretation (which uses two state vectors rather than one) to discuss.”

I admit that I “refuse to grant the gist of the objections [to the ABL rule (which uses
two-state vector)] being made”, but I cannot agree that [ “never clearly address them”.
Of course “clearly” is a very subjective term, but I hope that my reply will clarify my
view to the referee.

The ABL rule gives probabilities for the resuits of measurements performed at a time
t, 1y < t < ¢y, given the results of measurements at ¢; and at ¢;. The question is: can
these probabilities be useful in cases in which the measurement at time ¢ have not occur
or might have not occur.

The referee asks a somewhat different question: Is the meaning of the probability
given by the ABL rule a) the probability for the results of the measurements which were
actually performed, “b) the probability that the measurement, which did not take place
at ¢, would have given that result had it been performed or ¢) none of the above?”

There is a full consensus about (a), the question is: can we give meaning to the ABL
rule beyond this case? The meaning of (b), however, as stated is very obscure. [t is not
clear under which condition the probability is being considered. According to the basic
formulation of the ABL rule the condition must be that the results of the measurements
at £y and at ¢, are given. But the referee makes it clear in his analysis of a simple example
that the condition he considers is the result of the measurement at ¢, only. Naturally, the
time-symmetrized ABL formula does not give the probability for the time-asymmetrical
case (b).

According to the referee, the distinction between (a) and (b) (and the inapplicability
of the ABL rule to the case (b)) is an essential part of the criticism to which my paper
tries to respond. The referee complains that I do not respond directly to this issue. This
is not so. The case (b) of the referee is “the interpretation (b)” of Section 4 of my paper.
[ do discuss it in detail there and reach the same conclusion as the referee that the ABL
formula is not appropriate in this case. This, however, does not prove anything, since the
case is explicitly asymmetric in time. The question is can we have a time-symmetrized
theory for problems posed in a time-symmetric way as are all the problems I and my
colleagues investigated using the ABL rule?

The referee writes:

“Instead of responding directly to these objections, the author claims not
to understand the meaning of them, in particular claiming that onre cannot
make sense of ascribing probabilities to measurements which did not occur.”

It seems, however, that he agrees with me on this last point. Indeed, he continues:

“But the issue is not what results an unperformed experiment had, but
the probability for various results had the experiment been performed.”

Thus, he rejects, as I do, interpretation (a) of Section 4 of my paper. The referee under-
stands that interpretation (a) is meaningless and this makes my discussion of (a) unnec-
essary for him. I also cannot comprehend (a) (I state it clearly in the paper) and the only
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reason | consider it in detail is because the writings of some of the critics (as quoted in
the paper) strongly suggest that this is the interpretation they adopt. In particular, only
this interpretation seems to justify the calculations in “the proof of inconsistency” of the
critics, the key point of the whole argument.

The referee complains that it is hard to say what is the author’s own position. I state
it clearly in the paper, that it is interpretation (c) of Section 4. From reading p.3 of the
referee report 1 get the feeling that the referee understood the essential part of it, but he
was not ready to accept the meaning of counterfactuals which is different from the usual
usage as in his example. He showed that he has the same prejudice of time-asymmetric
counterfactuals which lead to the discussed criticism of the ABL rule.

Another prejudice of the referee which I suspect is common to some of the critics is
that counterfactuals must necessarily be contrary to the fact. The referee writes:

‘This is simply unintelligible: what does the author intend by “counter-
factual” if not “subjective conditional whose antecedent is contrary to the
fact”?’

To answer, let me quote the main “authority” in the field:

“Counterfactuals with true antecedents—counterfactuals which are not counterfactual-
are not automatically false, nor they lack truth value. This stipulation does
not seem to me at all artificial...”(Lewis, D. (1973), Counterfactuals, p.3).

The most common situation for the application of the ABL rule is that we know the
results at ¢; and {;, but we do not know which measurement out of set of incompatible
measurements was performed at time ¢. In discussing possible outcomes of these mea-
surements there is a “counterfactual” element since it is not possible to perform all of
them on the same system. It will be very strange in this case to discuss only the results
of measurements which were not performed. Note, however, an interesting application of
the ABL rule for “true” counterfactuals, see my footnote 10.

The referee understood that [ suggest “a way of evaluating counterfactuals which holds
the results at both {; and ¢, fixed.” He continues not to accept it:

“If this a true counterfactual, then this simply disagrees with how we do
evaluate them...”

And again:

“But this answer is not what we would be looking for if we ask, in normal
circumstances, the probability...”

Finally the referee admits:

“The rather nonstandard counterfactual can be made sense of, and maybe
this is what the author intend.”

Yes, this is what [ have in mind. The circumstances in which I, Aharonov, and others
working in the field apply the ABL rule are not of the kind (b) in the referee’s example.
We consider possible measurements on pre- and post-selected quantum systems.



The referee, however, continues:

“But since standard quantum theory, using the standard rules and Bayes’s
theorem will use the ABL rule here, so invoking the rule does not point us to
an alternative interpretation.

As this question of interpreting the ABL rule is the center of the paper,
and as the author’s position is obscure, I could not recommend the paper.”

Here [ have difficulty in understanding the argument of the referee. He understood my
position. He granted that “The rather nonstandard counterfactual can be made sense of”,
but then he says that “it does not point us to alternative interpretation.” After all, the
critics were supposed to show that there is no counterfactual interpretation of the ABL
rule whatsoever.

Maybe the following paragraph can explain the thoughts of the referee:

“The calculation on p.l4, meant to show the compatibility of the ABL
formula with standard quantum theory, is unintelligible from the point of view
of the ABL interpretation. The calculation does show that standard quantum,
together with probability calculus (Eq. 6) yield the ABL rule for a certain
situation. But this only works by using standard quantum theory (not the
ABL rule) for prob(1f) and prob (2f). If the project is systematically replace
the standard probability calculation with ABL calculations, this fails,”

Yes, now I can see why I do not understand the referee: the reason is that I do not know
what he means by “the ABL interpretation”, “the ABL rule”, and “ABL calculations”.
I have been working with Aharonov now for 15 years and I have used the ABL rule in
more than 20 papers and the only way to make ABL calculations I know is the one I have
used in calculations on p. 14. According to the referee this way is “unintelligible from the
point of view of the ABL interpretation”. I asked Prof. Aharonov for help, but he also
said that this “unintelligible” way (the way which is consistent with standard quantum
theory) is the one he always used and it is the only one he knows,

I thank the referee for spotting two mis-prints (just for the record: these are not
errors: the equations were used correctly later in the paper). I will make these and a few
other corrections (if the paper will be accepted) before publication. In particular, I will
change the phrasing so that the reader will not get an impression that [ want to discuss
a distinction between orthodox and standard interpretation. This semantic-historical
issue is not relevant for my paper. But, I would prefer not to change my usage of “the
system was found in the state |#;)”. This is a standard way to say that the result of a
measurement of some variable A was the nondegenerate eigenvalue g; corresponding to
the state |1;) without specifying irrelevant A and ¢;. I also do not think that I should
enter in the paper into a discussion of the collapse in the two-state formalism beyond the
remark made at the end of the paper that the formalism fits well with the many-worlds
interpretation (in which there is no collapse).
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Comments on "Time-Symmetrized Counterfactuals in Quantum Theory" #311

The author has extensively revised this paper in an cffort to address
difficulties identified by previous reviewers. Nonctheless [ am afraid

that [ have to recommend against publication, if for no other reason that
most of the presentation is extremely obscure. Section 2, which attempts
to outline the time-symmetrized formalism will not communicate the ideas to
readers who are not already thoroughly familiar with the ideas. Section 3,
which attempts a novel account of counterfactuals, leaves the ideas
unclear, so that [ was not able to see in later sections with any

confidence how they were supposed to apply. Isimply was not able to
follow the argument in section 4 - neither the presentation of the alleged
inconsistency arguments, nor the proposed reply. | was not able to
understand section 6 at all. In section 7, proposing various conceptions

of "elements of reality”, I fail to understand what is meant by inferring
"with certainty” from data at one time to an alleged element of reality at

a *prior* time. The relevant bit of the EPR reality condition is that, if

we chose, we can always examine one of the inferred elements of reality.
But we can never travel backwards in time to examine a retrodicted "element
of reality”; and I see no indirect way of examining such posits. Section 8
appears to be brief exposition of failure of separability effects already
discussed by others; and contrary to what the authors suggests, I fails to
see how time symmetric analvses helps us understand any of them more
clearly. 1found section 9, on weak measurements, completely obscure.

Given the over all obscurity of the presentation, 1 cannot be quite
sure whether or not the author has a correct argument defending time
symmetric analyses against the objections of Sharp and Shanks and others.
However, | am quite doubtful.



Rogenee .

The revisions in this paper do not adequately correct those failings I noted in my previous
report on an earlier version, and so once again I recommend against its publication in Philosophy
of Science. The authors have not succeeded in restating their response to Sharp's and Shanks's
objection more clearly and persuasively in a briefer and more carefully focussed discussion note.

Instead, this version of the paper contains significantly expanded treatments of other topics only
tangentially related to this central objection. The response to the objection itself in section 4
remains essentially unchanged, and the comments on this response in the concluding section 9 do
not significantly clarify the response.

This is particularly unfortunate, since after reading the authors' "Reply to the referee
whose report starts with 'l recommend...'" it is at last clear to me that they do have a reply (o
Sharp's and Shanks's objection that effectively addresses that objection (unlike the reply they
actually give, which misses the point of the objection)! Since several objections similar to that of
Sharp and Shanks have now been published, it seems highly desirable for the present authors to
present such a reply in a paper worthy of publication in a journal like Philosophy of Science. At
the risk of appearing to sketch such a paper for them, 1 shall try to make these points clear.

Consider the following situation, which we suppose to be actual. An ensemble of spin
1/2 systems with spin up in the a direction is prepared at ¢; by performing an ideal measurement
of spin in the @ direction on an ensemble of spin 1/2 systems, and selecting only those that give
the result "up". Later, at #, a measurement of spin in the ¢ direction is performed on each
member of this ensemble. Each member of the ensemble evolves freely between ¢; and  (in
particular, no measurement of spin in a & direction coplanar with ¢ and ¢ is carried out on any of
them). Now consider the following question;

'If an ideal measurement of spin in the 4 direction had been carried out on each member

of the ensemble at a time ¢ intermediate between #; and f;, what would have been the

probability of getting the result "up”?’
Answers to this question take the form of counterfactual statements--subjunctive conditionals
whose antecedent is false (since, as we supposed, no measurement of spin in a b direction
coplanar with ¢ and ¢ is actually carried out between 7 and f). On the usual treatment of
counterfactuals, the question is to be answered by considering worlds similar to the actual world
up to (just before) f, but subsequently diverging from the actual world because of the
performance of an ideal measurement of spin in the # direction on each member of the ensemble
at a time /. Now quantum mechanics specifies a probability

Probgy(up) = cos’(0,,/2)
which is usually thought of as the objective chance for an "up” result of the b-spin measurement
in any such world. Moreover, that objective chance is assumed to be the same whether (as in the
actual world) a measurement of spin in the ¢ direction is performed on each member of this
ensemble at 7, or (unlike the actual world) no such measurement is performed. Indeed, if this
were not the case, one could influence the objective chance at ¢ by performing a later
measurement at f; -- a clear case of backward causation. Standard quantum mechanics aiso
implies that this objective chance is the same in any of these worlds in which a measurement of
spin in the ¢ direction is performed on each member of this ensemble at I whatever the
outcomes of all these spin measurements are in that world.



Sharp's and Shanks’s objection is now that time-symmetrized quantum theory specifies a
probability different from Probgy,(up) in its answer (o our question: i.e. it implies the answer

'If an ideal measurement of spin in the & direction had been carried out on each member
(TS)  of the ensemble at a time 7 intermediate between 7; and {;, the probability of getting the
result "up” would have been Probrs(up).'  [where Probrg(up)# Probgy,(up)]

In section 4 of the paper under review the authors argue
( that Sharp and Shanks must be considering an actual situation in which an ideal
measurement of & spin is performed, since otherwise discussion of the probability of the
result of the measurement at 7 is meaningless ("Unperformed measurements have no
results™), and
(2) that time-symmetrized quantum theory gives the same probability as standard quantum
mechanics for such an actual situation. '
(2) is correct, but (1) is incorrect and its justification is spurious. It is because they incorrectly
maintain (1) that the authors of the paper under review fail to address Sharp's and Shanks's
actual objection, which I restated above. I suggest that proponents of time-symmetrized quantum
theory should respond to this objection as follows.

Sharp and Shanks are right that time-symmetrized quantum theory can be applied to a
merely counterfactual intervening measurement so as to give the answer (TS) to our
counterfactual question. Moreover, they are right to claim that Probg(up)# Probgy(up). But
this does not show that time-symmetrized quantum theory conflicts with ordinary quantum
mechanics, because Probig(up) and Probgy(up) are the values of two distinct probabilities.
From the perspective of ordinary quantum mechanics, while Probg(up) gives the wrong value
for the objective chance of the "up" result in the # spin measurement, it does give the correct
value of the epistemic probability of the "up” result in the » spin measurement for the
counterfactual situation in which the "up” result of the measurements of spin in the ¢ direction
performed on each member of the ensemble at 7, is known to occur with frequency cosz(eacJZ) --
the quantum mechanically predicied probability for the situation in which ¢ spin is measured at £
in the absence of any intervening measurement of # spin at ¢. From the point of view of time-
symmetrized quantum theory, this epistemic probability must be treated as basic, and not derived
from any underlying objective quantum mechanical chance. After all, objective chance is itself a
time-asymmetric concept that has no place in a thoroughly time-symmetrized theory! But time-
symmetrized quantum theory can still reproduce the predictions of ordinary quantum theory for
what proponents of the latter usually think of as chances: the argument for this (which now
becomes a conciliatory point) is essentially that given in section 4 of the paper.

If proponents of time-symmetrized quantum theory take this line (as I think they should),
then they do have an answer to Sharp's and Shanks's objection. But then they will face more
interesting challenges of a different kind. By reading all probabilities as epistemic, they make it



unclear how these arise from an underlying indeterminism. More importantly, on this reading of
the time-symmetrized counterfactuals it seems quite misleading to associate these with "elements
of reality” in the way the authors proceed to do in later sections of their paper. And their
suggested application to the "quantum puzzles” then threatens to make these seem more rather
than less puzzling. Such more interesting challenges will have to be faced later. For now, the
important thing is for the authors to briefly and carefully formulate their response to Sharp and
Shanks-type arguments in a way that proponents of those arguments can understand and to which
they will feel the need to respond.



APPEADIX WHItH WAL MOT SEuT

“... I also add an appendix in which I present a curious gedanken situation
which is a variation on the theme of the example of the referee. I believe that my
example serves better for demonstrating counterfactual interpretation of the ABL
rule. However, the example is not directly connected to the main issue-the validity
of inconsistency proofs—and I prefer not to have this example be the topic of the
future discussion about publication of my paper.

Appendix: gedanken story

I have a special friend. He 1s a quantum invisible man. He can be in a superpo-
sition of different macroscopic states and under normal circumstances he does not
leave any trace on the environment. He can come to me taking a bus or taking one
of the two train cars. He has chosen to make the journey to me in a superposition

L
V3

In order to meet him I made a special measurement and found him coming in the
state

(learl) + |car2) + |bus)).

1

\/§(|car1) + |car2) — |bus)).

At the intermediate time I heard the news that a team with special equipment
looked for invisible quantum men in one of the train cars. Now the ABL formalism
will help me to make a warning: “My friend, I know for sure that they saw you!” I
do not know in which car the team made the measurement, but the ABL formula
tells me that if the measurement was made in car 1, they saw my friend in car 1,
and if, instead, they looked in car 2, they saw him for sure in car 2.

(A discussion of this example with one particle in three boxes instead of mys-
terious invisible quantum man in the train and the bus can be found in Aharonov
and Vaidman (1991) and Vaidman (1996).”
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