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Nonlocal variables are briefly reviewed and it is shown that all nonlocal variables
related to two or more scparate sites can be measured instantancously, provided we
restrict ourselves to verification measurements. The method is based on quantum
teleportation.

Seventy years ago Landau and Peierls ! claimed that the measurability of non-
local variables contradicts relativistic causality. Twenty years ago, Aharonov and
Albert 2 showed that some nonlocal variables can be measured and that this does
not contradict causality. The question: “What are the obscrvables of relativistic
quantum theory?” remains topical even today 2. In the thriving field of quantum
communication this question is relevant for quantum cryptography and quantum
computation performed with distributed systems. Here, using the techniques of the
process of teleportation 4, I will show that all nonlocal variables related to two or
more separate sites are measurable.

Although there are many papers on nonlocal measurements, there is no clear and
unique definition of the concept of nonlocal variable. 1 will start with the discussion
of a nonlocal variable of a compound quantum system consisting of several separated
parts. One possible definition is:

Definition 1

Variable O of a compound system is nonlocal if it cannot be measured (in
a nondemolition way) using measurements of local variables of all separate
parts of the system.

According to this definition, for a system of two separated spin-% particles,
variable ¢ 4, + 05, is nonlocal, while 04, + 203 is local. Indeed, measurements of
o4, and op, separately yield values of both variables of the composite system, but
an eigenstate of 04, + 0 p,, %(H)H) +1{)I1)) is disturbed by local measurements
while all four eigenstates of 04, + 20, are not.

The requirement that the measurement is nondemolilion might not be relevant
for some considerations. Then we can modify the definition:

Definition 2

Variable O of a compound system is nonlocal if it cannot be verified
(maybe in a demolition way) using measurements of local variables of
all separate parts of the system.

According to this definition, the above variables are both local, but there are
other variables of two spin-% particles which are nonlocal. Probably the most
popular example is the Bell operator which is defined by its four nondegenerate
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eigenstates:
v = 7(H>A|1>B—|1>A|T>)
9.) = 7(|T>AIL>B+IL>A|T> 5), (1)
o) = ﬁ(tmms ~1all)s),
@) = (1) all)5 + 1) all)p)-

S

It is interesting that entanglement of the eigenstates is not a necessary condition
for the nonlocality. The variable with the following set of eigenstates which are all
product states is also nonlocal :

W) = 11.)4lT.) 8,

|W2) = 11.)all) B, (2)
[¥s) = [1.)all.)B,

[a) = l)alla) s

The question I want to discuss here is the measurability of nonlocal variables.
I consider instantaneous von Neumann measurements relaxing the requirement of
repeatability, i.e., as in Definition 2, the requirement that the measurement is
nondemolition. The existence of a measurement which yields the eigenvalue of a
variable with certainty, if prior to the measurement the quantum system was in
the corresponding eigenstate, gives the physical meaning for such a variable. (The
need to relax the requireinent of repeatability was clear before 7, when it has been
shown that measurements of som: nonlocal variables erase local information and,
therefore, cannot be nondemolitio:.)

The meaning of “instantaneovs measurement” is that in a particular Lorentz
frame, at time ¢, we perform loca actions for a duration of time which can be as
short as we wish. At the end of th» procedure (arbitrary small period of time after
t) there are local records which together yield the outcome of the measurement
of the nonlocal variable. The qucstion I ask: “Is it possible to measure nonlocal
variables (defined by Definition 21 in instantaneous measurements of this type?”
We assuine that it is allowed to perform, beyond local measurements, arbitrary
local interactions and to use prior entanglement between the sites of different parts
of the system.

In fact, it was known before ® ihat the Bell operator variable can be measured,
and even in a nondemolition way. The variable (2) cannot be measured in a non-
demolition way: its measurability would allow superluminal communication. The
question of measurability (in a dcinolition way) of nonlocal variable of all types
has been answered only recently ° Here I will report this result, showing that all
nonlocal variables related to two ¢r more separate sites are measurable.

I will start explaining the method by describing the measurement of a nonlocal
variable with nondegenerate eigen: tates (2). The first step of the measurement is
the teleportation of the state of the spin from B (Bob's site) to A (Alice’s site). Bob
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and Alice do not perform the full teleportation (which invariably requires a finite
period of time), but only the Bell measurement at Bob’s site which might last, in
principle, as short a time as we wish. (I will continue to use the term “teleportation”
just for this first step of the original proposal *.) This action teleports the state of
particle B except for a possible rotation by = (known to Bob) around one of the
axes of teleportation: &), &4, or £3.

The second step is taken by Alice. She can perform it at time t without waiting
for Bob. She measures the spin of her particle in the z direction. If the result is “up”,
she measures the spin of the particle teleported from Bob in the z direction and if
the result is “down”, she measures the spin in the z direction. This completes the
measurement. Indeed, the eigenstates of the spin in the z direction are teleported
without leaving the z line and the eigenstates of the spin in the x direction are
teleported without leaving the x line. Thus, Bob’s knowledge about possible flip
together with Alice’s results distinguish unambiguously between the states ;.

Next, consider the measurement of a nonlocal variable of two spin-% particles
located in separate locations A and B, whose eigenstates are the following general-

ization of (2):

[¥1) =114 128,
[Wa) = [T)a | 1) s, (3)
[¥3) = 1104 | 1a)B,
() =|1)alle)s,

where [T4) is an eigenstate of a spin pointing in a direction 6 making angle 8 with
the z axis. The method of measurement of this variable was found recently using
a different approach !© and this result inspired the current work.

The first step is, again, the Bell measurement at Bob’s site which teleports the
state of the spin from B to A except for a possible rotation by = (known to Bob)
around one of the axes of teleportation: Z,, Z4, or £3. This time Bob modifies the
axes of teleportation (which define the eigenstates of the Bell measurement) in the

following way: £3 = Z and Z, is such that @ lies in the plane of £; and £,, see
Fig. 1.

The second step is taken by Alice at time ¢. As in the previous case, she measures
the spin of her particle in the z direction.

If the result is “up”, she measures the spin of the particle teleported from Bob
in the 2z direction and this completes the measurement since the eigenstates of
the spin in the z direction are teleported without leaving the z line and, there-
fore, Bob’s knowledge about possible flip together with Alice’s results distinguish

unambiguously between ¥ and ¥,.
If the result is “down”, Alice cannot perform a measurement on Bob's teleported

particle because it has spin either along the line of 8 (corresponding to teleportation
without rotation or rotation around #,) or along the line of 7 obtained from the line
of by = rotation around £, (or &3). In this case, Alice teleports Bob's teleported
state back to Bob using a new teleportation axes defined by 4 = 0 and 2§ = 5.
In the third step, Bob performs an action similar to that of Alice in step 2. He
knows whether the spin state in 8 direction was teleported to Alice along the 6 line
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Figure 1. The axes of teleportations. Bob starts with teleportation choosing 3 and £ such that
6 lies in the plane defined by the axes. Alice teleports back with £ = §. Bob continues with

Y= ', cte.

or along the ¢ line. In the former case, the state teleported to him is still along
the 8 line, so he completes the procedure by spin measurement in this direction.
In the latter case, he receives the spin either along the  line or along the " line
obtained by 7 rotation around the & axis. In this case, he teleports the particle
back with the teleportation axes Z5= ¢ and I4= Zo.

Alice and Bob continue this procedure. If § = 2—}:;71', the line 6(™) coincides with
the line §0"=1) becausc the angle between the lines is: " — §(n=1) = (27g}modm.
In this particular case the process is guaranteed to stop after n teleportation steps.
If the lines do not coincide, the probability that after n teleportations the result of
the measurement is not known is 27", so the probability of success can be made
as large as we wish. There is no minimal time for performing all the steps of this
procedure. Bob and Alice need not wait for each other: they only have to specify
before the measurement the teleportation channels they will use. Note, that usually
Alice and Bob will use only a small number of teleportation channels: they stop
when both Alice and Bob make teleportations which do not change the line of the
spin. Thus, this method requires less resources than the alternative approach '°.

Groisman and Reznik !9 showed also how to measure other nonlocal variables
of two spin—% particles. The method I presented above can be modified for these
variables too. However, I will turn now to another, universal, method which is
applicable to any nonlocal variable O(qa4,¢p,...), where g4 belongs to region A,
etc. I will not try to optimize thie method or consider any realistic proposal: my
task is to show that, given unlimited resources of entanglement and arbitrary local
interactions, any nonlocal variable is measurable.

I will start with the case of a general variable of a composite system with two
parts. First, (for simplicity), Alice and Bob perform unitary operations which
swap the states of their systems with the states of sets of spin—% particles. In this
way Alice and Bob will need the teleportation procedure for Spin-% particles only.
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Teleporting the states of all individual spins teleports the state of the set, be it
entangled or not.

The general protocol is illustrated in Fig. 2. Bob teleports his system to Alice.
Again, he does not send to Alice the results of his Bell measurements, but keeps
them for his further actions; we signify the possible outcomes of these measurements
by i = 1,..N. The outcome i = 1 corresponds to finding singlets in all Bell
measurements and in this case the state of Bob’s system is teleported without
distortion.

Alice performs a unitary operation on the composite system of her spins and
the teleported spins which, under the assumption of non-distorted teleportation,
transforms the eigenstates of the nonlocal variable (which now actually are fully
located in Alice’s site) to product states in which each spin is either “up” or “down”
along the z direction. Then she teleports the complete composite system consisting
of her spins and Bob’s teleported spins to Bob. From now on this is the system which
will be teleported back and forth between Bob and Alice. In all these teleportations
the usual z,z,y basis is used. Hence, if the state is in the one of the product states
in spin z basis, then it will remain in this basis.

If, indeed, Bob happened to teleport his spins without any distortion, i.e., 2 = 1
(the probability for which is ﬁ), Bob gets the composite system in one of the spin
z product states and his measurements in the spin z basis that he now performs,
complete the measurement of the nonlocal variable. 1f i # 1, Alice’s operation does
not bring the eigenstates of the nonlocal variable to the spin z basis, so Bob cannot
perform the measurement and he teleports the system »ack to Alice following a
protocol that we explain below.

Alice and Bob have numerous teleportation channels arranged in N — 1 clusters
numbered from 2 to N. Each cluster consists of two teleportation channels capable
to teleport the complete system and M — 1 clusters of a similar type, where M is
the number of possible outcomes of the Bell measurement for teleportation of the
complete system. In turn, each of the M — 1 clusters consists of two teleportation
channels and M — 1 further nested clusters, etc.

If in his first teleportation the result of Bob’s Bell measurements is ¢, he teleports
now the composite system back to Alice in the teleportation channel of cluster i.
Alice does not know in which channel she gets the system back (if she gets it back
at all). So she must work on all of them. She knows that if she does get the system
in channel 4, the result of the Bell measurement in Bob’s first teleportation was i.
Thus, she knows all the transformations performed on this system except for the last
teleportation. Alice performs a unitary operation that transforms eigenstates of the
nonlocal variable to product states under the assumption that the last teleportation
was without distortion and teleports the system back to Bob.

Let us denote the result of the Bell measurement in Bob’s last teleportation
by ¢/, i = 1,..,M. Again, for i/ = 1 which corresponds to finding singlets for all
Bell measurements, Bob performs the spin z measurement on the system which
he receives in the teleportation channel of the cluster ¢. This then comnpletes the
nonlocal measurement. Otherwise, he teleports the system back in the channel of
the sub-cluster ¢. Alice and Bob continue this procedure. The nonlocal measure-
ment is completed when, for the first time, Bob performs a teleportation without
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Figure 2. The scheme of the measurement of a nonlocal variable of a two-part system.
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distortion. Since, conceptually, there is no limitation for the number of steps, and
each step (starting from the second) has the same probability for success, ﬁ, the
measurement of the nonlocal variable can be performed with probability arbitrarily
close to 1.

The generalization to a system with more than two parts is more or less straight-
forward. Let us sketch it for a three-part system. First, Bob and Carol teleport
their parts to Alice. Alice performs a unitary transformation which, under the
assumption of undisturbed teleportation of both Bob and Carol, transforms the
eigenstates of the nonlocal variable to product states in the spin z basis. Then she
teleports the complete system to Bob. Bob teleports it to Carol in a particular
channel ip depending on the results of the Bell measurement of his first telepor-
tation. Carol teleports all the systems from the teleportation channels from Bob
back to Alice in the channels (ip,ic) depending on her Bell measurement result
ic. The system corresponding to (ip,ic) = (1,1) is not teleported, but measured
by Carol in spin z basis. Alice knows the transformation performed on the system
which arrives in her channels (ig,i¢) except for corrections due to the last tele-
portations of Bob and Carol. So she again assumes that there were no distortions
in those, and teleports the system back to Bob after the unitary operation which
transforms the eigenstates of the variable to product states in the spin z basis. Al-
ice, Bob and Carol continue the procedure until the desired probability of successful
measurement is achieved.

The required resources, such as the number of teleportation channels and re-
quired number of operations are very large, but this does not concern us here.
We have shown that there are no relativistic constraints preventing instantaneous
measurement of any variable of a quantum system with spatiully separated parts,
answering the above long standing question.

Can this result be generalized to a quantum system which itself is in a super-
position of being in different places? The key to this question is the generality of
the assumption of the possibility to perform any local operaiion. If a quantum
state of a particle which is in a nonlocal superposition can be locally transformed
to (an entangled) state of local quantum systems, then any variable of the particle
is measurable through the measurement of the corresponding composite system.
However, while for bosons it is clear that there are such local operations (trans-
formation of photon state to entangled state of atoms has been achieved in the
laboratory !!), for fermion states the situation is different ‘2. 1f the transformation
of a superposition of a fermion state to local variables is possible, then these local
separated in space variables should fulfill anti-commutation relations. This is the
reason to expect super-selection rules which prevent such tran:formations.

It is a pleasure to thank Yakir Aharonov, Shimuel Nussino: and Benni Reznik
for helpful discussions. This research was supported in part by grant 62/01 of the
Israel Science Foundation and by the Israel MOD Research and Technology Unit.
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DISCUSSION
Chairman: R. Chiao

G. Hegerfeldt: 1 have a very simple question. As I understand you are working
in non-relativistic quantum mechanics. Then you are using the finite velocity of
light. How can you bring them together?

L. Vaidman: The context of the work is following. We have non-relativistic
quantum mechanics and then, when people talk about relativistic quantum me-
chanics, they usually go to field theory, string theory and so on. The question is:
Can we go and use the concept of non-relativistic quantum mechanics correctly in
relativistic quantum mechanics? If we have a variable of the form O(g,, g, ¢, t),
does it have meaning in relativistic quantum mechanics? The claim is that it does
have a meaning. It is clearly physical and it is measurable in Nature. There is
a procedure, which will tell us exactly what it is. It will transform accordingly
from one Loreniz frame to another because it is measurable. So, this variable has
a meaning in relativistic quantum mechanics.

E. Polzik: Your results imply that if there is an entanglement shared between
two particles, the presence of this entanglement can be verified instantaneously.

L. Vaidman: No. When you make a quantum measurement, you measure an
operator. You find an eigenvalue. You don’t know that before the measurement
the state was the eigenstate with this eigenvalue. You know that the state was
not orthogonal to this eigenstate. So, if I found an entangled state —\}?(H)AH)B -
[£)4l1) 5 it might be that before the measurement it was just |1)4|{) 5. I had a 50%
chance to find it entangled.



