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Strict bounds on the Franson inequality
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An inequality, recently proposed by Franson@Phys. Rev. A54, 3808~1996!#, is analyzed and improved. The
inequality connects the change of the expectation value of an observable with the uncertainty of this observ-
able. A strict bound on the ratio between these two quantities is obtained.@S1050-2947~98!04503-X#

PACS number~s!: 03.65.Bz
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In a recent paper Franson@1# developed a quantitative
expression that characterizes the fact that a quantum ob
able cannot change its expectation value without hav
some quantum uncertainty. The simplest explanation of
property is that in order for a quantum system to go from o
eigenvalue of an observable to another it must evo
through a superposition of the eigenstates that is chara
ized by nonzero uncertainty of the observable. Franson
posed to consider the change of an observableQ after it has
been measured such that the initial state of the system at
t50 is an eigenstate of the observable. Then, at any mom
of time t in the periodt1,

t15
\

A2DE
, ~1!

whereDE is the energy uncertainty of the system, the f
lowing inequality is fulfilled:

ud^Q&u<DQ. ~2!

HereDQ is the uncertainty at timet,

DQ5A^C~ t !uQ2uC~ t !&2^C~ t !uQuC~ t !&2, ~3!

andd^Q& is the change in the expectation value,

d^Q&5^C~ t !uQuC~ t !&2^C~0!uQuC~0!&. ~4!

If an inequality expresses a basic physical law, there m
be cases where it is saturated; if not, it must be replaced
stricter inequality that does saturate. The Franson inequ
as it is presented in his paper cannot reach the equality~ex-
cept att50). The purpose of this paper is to expand Fra
son’s bound such that the revised inequality cannot be
placed by any stricter inequality.

There are two elements by which we expand the Fran
inequality. First, we replace his approximate calculations
exact calculations and obtain, instead of Eq.~1!, a larger
period of timet2 for which the inequality~2! is fulfilled.
Then, for timet5t2 the inequality can be saturated. How
ever, for any intermediate time,tP(0,t2), the inequality can-
not be saturated. In order to correct this we introduce ti
explicitly into the inequality.

The Franson inequality is closely connected with a cert
type of time-energy inequality that constrains the time of
evolution of a system to an orthogonal state:
571050-2947/98/57~3!/1583~3!/$15.00
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4DE
. ~5!

Although it has a similar form, it is conceptually differen
from the Heisenberg uncertainty relations for position a
momentum.1 There are many derivations of this result. As f
as we know the first derivation was given by Mandelsta
and Tamm@3#, and a very simple derivation can be found
Vaidman@4#. We will apply this result for deriving a stric
bound on the Franson inequality. A more general form of
time-energy inequality that we will need here is

z^C~ t !uC~0!& z>cosS DEt

\ D , ~6!

which is valid for tP@0,p\/2DE#, whereDE is the energy
uncertainty of the system. This inequality is quoted by Y
@2# @his Eq.~1!# and it can be obtained, e.g., from Eq.~8! of
Ref. @4#.

Let us turn to finding the optimal bound on the period
time for which the Franson inequality~2! is fulfilled. This
problem is equivalent to finding the minimal time for whic
ud^Q&u5DQÞ0. Without loss of generality we can assum
that the eigenvalue ofQ at the initial time is zero, i.e.,
uC(0)&5uQ50&[u0&. At time t the state of the system ca
be expressed as

uC~ t !&5au0&1bu1&, ~7!

where u1& is orthogonal tou0&. For convenience, we defin
u1& in such a way thatb is real and positive. Then, applyin
definitions~3! and ~4! we obtain

DQ5Ab2^1uQ2u1&2b4^1uQu1&2, ~8!

d^Q&5b2^1uQu1&. ~9!

From ud^Q&u5DQ follows:

b25
1

2

^1uQ2u1&

^1uQu1&2 . ~10!

1Recently, Yu@2# described an analog of this time-energy inequ
ity for position and momentum.
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Since^1uQu1&2 is always smaller than or equal to^1uQ2u1&,
the minimal value forb is 1/A2. For this value ofb we
obtain

z^C~ t !uC~0!& z5uau5A12b25cos
p

4
. ~11!

From the time-energy relation~6! it follows that the minimal
time @which corrects Franson’s bound~1!# is

t25
p\

4DE
. ~12!

Since 1/A2,p/4, the time limit we found is indeed large
than that of Franson@Eq. ~1!#. Note that this is half the mini-
mal time of an evolution to an orthogonal state.

Consider an example of a spin-1
2 particle precessing in a

magnetic field. Let us assume that the initial state isu↑&, the
‘‘up’’ state in thez direction, and that the magnetic field is
they direction. Then, the time evolution can be expressed
the following form:

uC~ t !&5cosS DEt

\ D u↑&1sinS DEt

\ D u↓&. ~13!

Therefore,

d^sz&5cosS 2DEt

\ D21, ~14!

Dsz5sinS 2DEt

\ D . ~15!

Thus we see thatud^sz&u<Dsz for t<t2. The equality is
reached fort5t2.

The same bound is obtained for any other two-level s
tem or even for any system with higher-dimensional Hilb
space in case the quantum state of the system moves
inside a two-dimensional subspace during its evolution.
troducing any additional state will invariably increase t
minimal time for reaching the equalityud^Q&u5DQ.

It is interesting to consider the connection betweend^Q&
and DQ when we do not impose the initial conditionDQ
50. We ask what is the minimal period of time during whic
the change in the expectation value reaches the value o
maximal uncertainty during this period of time.

Consider our example of a spin-1
2 particle. A simple

analysis shows that the minimal time to reach the equa
ud^Q&u5DQ is obtained for the evolution between the sta

uC in&5cosS p

6 D u↑&1sinS p

6 D u↓&, ~16!

uC f&5cosS p

3 D u↑&1sinS p

3 D u↓&. ~17!

This time is

t35
p\

6DE
. ~18!
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In this caseud^sz&u5max(Dsz)51 and the maximum uncer
tainty is obtained at the middle point of the evolution.

However, an example in which only two states are
volved is not the optimal one. A system ofN spin-12 particles
precessing in a magnetic field yields a smaller time for rea
ing the equality ud^( i(sz) i&u5D@( i(sz) i #. The minimal
time for this is

t45ANarcsinS 1

2AND \

DE
. ~19!

At the limit of N→` we reach the minimal time

t55
\

2DE
. ~20!

The same minimal time is obtained in the most natural
ample of comparison betweend^Q& andDQ. Consider a free
particle of massm in one dimension in a minimal uncertaint
Gaussian wave packet that moves with high velocityv, such
that the expectation value of the particle’s momentum
much larger than its uncertainty,^p&@Dp. Then, sinceE
5p2/2m, we obtain

DE;
^p&Dp

m
. ~21!

Taking into account the Heisenberg relation for minimal u
certainty, DxDp5\/2, we find the time for whichd^x&
5Dx:

Dx

v
5

Dxm

^p&
5

DxDp

DE
5

\

2DE
. ~22!

~We have disregarded the change of the uncertainty in p
tion during this time because it is negligible in our case
which ^p&@Dp.!

The periodt5 is a strict bound for the minimal period o
time during which the change in the expectation va
reaches the value of the maximal uncertainty. This result
be obtained immediately from the Heisenberg relation:

DEDQ>
1

2
u^@H,Q#&u5

\

2Ud^Q&
dt U. ~23!

If DQ is essentially constant during the process, we find t
the equalityud^Q&u5DQ is reached during the timet5.

The strict boundt5 and the boundst3 andt4 are bounds
for a different problem from the one Franson proposed. T
novelty of his inequality is in considering an evolution sta
ing from an eigenstate of an observable. For such a prob
only the Franson boundt1 and the improved boundt2 are
relevant. The boundt2 is absolute in the sense that there
no larger bound for which the inequality~2! holds for the
whole periodtP@0,t#. However, even with this exact boun
the inequality cannot be considered as a fundamental
because it cannot be saturated for any time exceptt50 and
t5t2. In order to find a basic inequality let us return to Eq
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~8! and~9!, but now we will not limit ourselves to the equa
ity ud^Q&u5DQ. By dividing the equations we obtain

ud^Q&u
DQ

5
1

A^1uQ2u1&/b2^1uQu1&221
. ~24!

From the time-energy relation~6! we obtain

b5A12 z^C~0!uC~ t !& z2<A12cos2S DEt

\ D5sinS DEt

\ D .

~25!

Now, taking into account again that^1uQu1&2<^1uQ2u1& we
obtain a new inequality:
ud^Q&u
DQ

<tanS DE

\
t D . ~26!

This inequality is valid fortP(0,p\/2DE#. The inequality
~26! is a basic law since it cannot be replaced by a stric
inequality. Indeed, the example of a spin-1

2 particle precess-
ing in a magnetic field saturates the inequality: it becomes
equality for the whole period (0,p\/2DE#.
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