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Abstract. Various quantum measurement procedures are analyzed
and it is shown that under certain conditions they yield consistently
weak values which might be very different from the eigenvalues, the
allowed outcomes according to the standard quantum formalism. The
weak value outcomes result from peculiar quantum interference of the
pointer variable of the measuring device.

1 Introduction

In the standard formalism of quantum theory the outcome of a (good) measurement
must be an eigenvalue of the operator corresponding to the measured variable. In
this paper I will discuss a modified measuring procedures which will yield instead of
an eigenvalue a weak value, recently introduced by Aharonov, Albert and Vaidman
(1988). The weak value of an observable A is defined for a two-state vector (¥,| |¥;)

as

_ (Ya|A[¥,)

Ao =gy M

The expectation value of A for a system in a state |¥) is a particular case of a weak
value when |¥;) = |¥5) = | ).

The standard ideal measurements requires infinitely strong coupling. The weak
values emerge only if the measuring coupling is bounded and in most (but not in
all) cases the coupling must be weak and this is the reason for the name “weak
value”.
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The important surprising feature of the weak value is that it might be far away from
the range of the eigenvalues, for example, the weak value of kinetic energy might
be negative, see Aharonov et al. (1993). The weak value is, in general, a complex
number. The (almost) standard measurement procedure with a weakened coupling
yields the real part of the weak value. The imaginary part can be measured too
but we will not discuss 1t here.

The expectation value, (¥|A|¥) emerges in a weak measurement of a quantum sys-
tem pre-selected in a state |¥) as well as in a protective measurement (Aharonov
and Vaidman 1993, Aharonov, Anandan and Vaidman 1993) when the state |¥)
is protected. . The weak value (1) emerges in a weak measurement performed on
a quantum system pre-selected in the state [¥;) and post-selected in the state
|¥4) as well as in a protective measurement when the two-state vector (¥q| |¥;) is
protected. Protective measurements consist of protection coupling and measuring
coupling. The protection coupling usually protects several quantum states or sev-
eral quantum two-state vectors. If the system is protected by such a coupling but
not selected in one of the protected states (two-state vectors) then the outcome of
the measurement is the weak value corresponding to one of the protected states
(two-state vectors) chosen at random. I shall discuss all these cases below.

2 Measurement Procedure

According to standard definition, a quantum measurement of a physical variable
A is described by the Hamiltonian:

H=gt)PA , (2)

where P is a canonical momentum conjugate to the pointer variable @) of the mea-
suring device. The function g(¢) is nonzero only for a very short time interval
corresponding to the measurement, and is normalized so that [ g(t)dt = 1. During
the time of this impulsive measurement, the Hamiltonian (2) dominates the evo-
lution of the measured system and the measuring device. Since [A, H] = 0, the
variable A does not change during the measuring interaction. The initial state of
the pointer variable is usually modeled by a Gaussian centered at zero:

®;,(Q) = e=9°/28%, (3)
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Here and below we omit the normalization factor. The pointer is in the “zero”
position before the measurement, i.e. its initial probability distribution is

prob(Q) = e=Q1A% (4)

If the initial state of the system is an eigenstate |¥;) = |a;), then after the inter-
action (2), the state of the system and the measuring device is:

|a;)e=(Q=a)?/24%, (5)

The probability distribution of the pointer variable, e=(@-29)%/A% remained un-
changed in its shape, but it is shifted by the eigenvalue a;. In an ideal measure-
ment, the initial probability distribution of the pointer is well localized around
zero, and thus the final distribution is well localized around the eigenvalue. Thus,
the reading of the pointer variable in the end of the measurement almost always
yields a value of the shift (the eigenvalue of the variable).

If the initial state of the system is a superposition |¥;) = Xa;|a;), then after the
interaction (2) the state of the system and the measuring device is:

Ea,'la,'>€_(Q_ai)2/2A2. (6)

The probability distribution of the pointer variable corresponding to the state (6)
is

prob(Q) = Ela;lze‘(q_a*)g/y. (7)

In case of ideal measurement this is a weighted sum of the initial probability distri-
bution localized around various eigenvalues. Therefore, the reading of the pointer
variable in the end of the measurement almost always yields the value close to one
of the eigenvalues.

In the case of the ideal measurement the measuring interaction leads to a very
large uncertain change of the system due to a large uncertainty of the variable P.
Indeed, in the standard measurement we require that the pointer shows zero before
the measurement, i.e., A is very small for the initial state of the measuring device
(3). This requires large uncertainty in P, and therefore the Hamiltonian (2) causes
a large uncertain change.
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The weak measurement is also described by the interaction Hamiltonian (2) but it
kept small by taking the initial state of the measuring device such that (P) = 0
and the uncertainty in P is small. We consider A >> q; for all eigenvalues a;. Then,
we can perform the Taylor expansion of the sum (7) around @ = 0 up to the first
order and rewrite the probability distribution of the pointer in the following way:

prob(Q) = Elai|2e"(Q_“‘)2/A2 =
Sla[*(1 - (Q = a;)?/A?) = 7 (@-FleulTe/ 47 (8)

But this is exactly the initial distribution shifted by the value X|a;|%a;. This is
the the expectation value which is also the weak value in this pre-selection case:
Ay = Z|a;|%a; = (¥]A|¥). This weak value can be found from statistical analysis
of the readings of the measuring devices of such measurements performed on an
ensemble of identical quantum systems. But it is different conceptually from the
standard definition of expectation value which is a mathematical concept defined
from the statistical analysis of the ideal measurements of the variable A all of which
yield one of the eigenvalues a;.

3 Protective Measurements

In general, the weak (expectation) value cannot be measured on a single system.
However, it can be done if the quantum state is protected (Aharonov and Vaidman
1993). The appropriate measurement interaction is again described the Hamilto-
nian (2), but instead of impulsive interaction the adiabatic limit of slow and weak
interaction is considered: g(t) = 1/7 for most of the interaction time 7" and g(t)
goes to zero gradually before and after the period 7'

In this case the interaction Hamiltonian (2) does not dominate the time evolution
during the measurement, moreover, it can be considered as a perturbation. The
free Hamiltonian Hy dominates the evolution. In order to protect a quantum state
this Hamiltonian must have the state to be a nondegenerate energy eigenstate. For
g(t) smooth enough we then obtain an adiabatic process in which the system cannot
make a transition from one energy eigenstate to another, and, in the limit T —
00, the interaction Hamiltonian changes the energy eigenstate by an infinitesimal
amount. If the initial state of the system is an eigenstate |E;) of Hy then for any
given value of P, the energy of the eigenstate shifts by an infinitesimal amount
given by the first order perturbation theory:

§E = (Ei|Him| Bi) = (E:|A|E:)PT. (9)
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The corresponding time evolution e™*P(E:l4lE:) shifts the pointer by the expecta-

tion value of A in the state |E;). Thus, the probability distribution of the pointer
variable remains unchanged in its shape, and is shifted by the expectation value
(A)i = (Ei|ALE).

If the initial state of the system is a superposition of several nondegenerate energy
eigenstates |¥1) = Xa;|E;), then a particular outcome (A); = (E;|A|E;) appears
at random, with the probability |a;|%. (Subsequent adiabatic measurements of the
same observable A invariably yield the expectation value in the same eigenstate

|E;).)

4 Pre- and Post-Selected Systems

Aharonov, Bergmann and Lebowitz (1964) considered measurements performed on
a quantum system between two other measurements, results of which were given.
They proposed describing the quantum system between two measurements by using
two states: the usual one, evolving towards the future from the time of the first
measurement, and a second state evolving backwards in time, from the time of the
second measurement. If a system has been prepared at time ¢; in a state |¥)
and is found at time t; in a state [¥5), then at time ¢, t; < t < g, the system is

. Lt . [t

described by (¥]e’ f’? HE and e Hdtl\Ill). For simplicity, we shall consider
the free Hamiltonian to be zero; then, the system at time ¢ is described by the two
states (W5 and |¥;). In order to obtain such a system, we prepare an ensemble
of systems in the state |¥;), perform a measurement of the desired variable using
separate measuring devices for each system in the ensemble, and perform the post-
selection measurement. If the outcome of the post-selection was not the desired
result, we discard the system and the corresponding measuring device. We look
only at measuring devices corresponding to the systems post-selected in the state

(sl

Let us show briefly how weak values emerge from a measuring procedure performed
on a pre- and post-selected system with a sufficiently weak coupling. We consider
a sequence of measurements: a pre-selection of |¥;), a (weak) measurement inter-
action of the form of Eq. (2), and a post-selection measurement finding the state
|¥2). The state of the measuring device (which was initially in a Gaussian state)
after this sequence is given (up to normalization) by

B(Q) = (Tale i PA|T)em @ /287 (10)
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In the P-representation we can rewrite it as

$(P) = (Tofly) e™AnF 47/ 4

oty 3 G (4 — (a Yo" )

If A is sufficiently large, we can neglect the second term of (11) when we Fourier
transform back to the Q-representation. Large A corresponds to weak measurement
in the sense that the interaction Hamiltonian (2) is small. Thus, in the limit of weak
measurement, the final state of the measuring device (in the @J-representation) is

B(Q) = e~ (@Aw28% (12)

This state represents a measuring device pointing to the weak value, A,. Since
A has to be large, the weak coupling between a single system and the measuring
device will not, in most cases, lead to a distinguishable shift of the pointer variable,
but collecting the results of measurements on an ensemble of pre- and post-selected
systems will yield the weak values of a measured variable to any desired precision.
Although we have showed the emergence of weak values in weak measurements for a
specific von Neumann model of measurements, the result is completely general: any
coupling of a pre- and post-selected system to a variable A, provided the coupling
is sufficiently weak, results in effective coupling to A, .

5 Protection of a Two-State Vector

At first sight, it seems that protection of a two-state vector is impossible. Indeed, if
we add a potential that makes one state a nondegenerate eigenstate, then the other
state, if it is different, cannot be an eigenstate too. (The states of the two-state
vector cannot be orthogonal.) But, nevertheless, protection of the two-state vector
is possible (Aharonov and Vaidman, 1995).

The procedure for protection of a two-state vector of a given system is accom-
plished by coupling the system to another pre- and post-selected system. The
protection procedure takes advantage of the fact that weak values might acquire
complex values. Thus, the effective Hamiltonian of the protection might not be
hermitian. Non-hermitian Hamiltonians act in different ways on quantum states
evolving forward and backwards in time. This allows simultaneous protection of
two different states (evolving in opposite time directions).
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Let us consider an example of a two-state vector of a spin-1/2 particle, (1y]|tz).
The protection procedure uses an external pre- and post-selected system S of a
large spin N that is coupled to our spin via the interaction:

Hyprot = =S - 0. (13)

The external system is pre-selected in the state |S;=N) and post-selected in the
state (Sy=N|, that is, it is described by the two-state vector (Sy=N||S;=N). The
coupling constant X is chosen in such a way that the interaction with our spin-1/2

particle cannot change significantly the two-state vector of the protective system
S, and the spin-1/2 particle “feels” the effective Hamiltonian in which S is replaced
by its weak value,

S :<S :NI(S::;Syasz)IS :N)
v (Sy = N|S; = N)

= (N, N,iN). (14)

Thus, the effective protective Hamiltonian is:
Heff = —AN(U,+ay+iaz). (15)

The state [t;) is an eigenstates of this (non-hermitian) Hamiltonian (with eigen-
value —AN). For backward evolving states the effective Hamiltonian is the her-
mitian conjugate of (15) and it has different (nondegenerate) eigenstate with this
eigenvalue; the eigenstate is {1].

In order to prove that the Hamiltonian (13) indeed provides the protection, we
have to show that the two-state vector (t,||t;) will remain essentially unchanged
during the measurement. See details of the proof in Aharonov and Vaidman, (1995,
1996) and Aharonov et al. (1996).

At least formally we can generalize this method to make a protective measurement
of an arbitrary two-state vector (¥2}|¥;) of an arbitrary system. However, this
scheme usually leads to unphysical interaction and is good only as a gedanken
experiment in the framework of non-relativistic quantum theory where we assume
that any hermitian Hamiltonian is possible.

6 Weak Values and Protective Measurements

The protective Hamiltonian (13) has more interesting features than just protecting
the two state vector (1||1z). There is another two-state vector which is protected:
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the two state ({s||[{y) with corresponding eigenvalue AN.

In general, a nondegenerate non-hermitian Hamiltonian yields protection for a set
of pairs consisting from “bras”and “kets”. The Hamiltonian can be written in the
following form

H= E;w;%, (16)

where (¥;] are the “eigen-bras” of H, and |®;) are the “eigen-kets” of H. The (¥,|
form a complete but, in general, non-orthogonal set, and so do the |®;). They obey
mutual orthogonality condition:

(U ]®s) = 6:5 (V4| ®s). (17)

If the initial state is a superposition of the eigenstates |¥) = X;a;[¥;) then its time
evolution is given by

[¥(t)) = N () Ticie™ T |W;) (18)

An adiabatic measurement coupling of a variable A performed on such system leads
to the state of the system and the measuring device given by

_ (®:]A[YS)

Tiaie T |0, (Q (®;]¥;) ). (19)

The state of the measuring device is then amplified to a macroscopically distinguish-
able situation and, according to standard interpretation, a collapse takes place to

the reading of one of the weak values of A with the relative probabilities given by
laie-—iw;TP.

In summary, the main properties of such adiabatic measurements are (Aharonov
et al. 1996):

a) The only possible outcomes of the measurement are the weak values A!, corre-
sponding to one of the pairs of states (1;]|¢;) associated with the non hermitian
Hamiltonian.

b) A particular outcome A} appears at random, with a probability which depends
only on the initial state of the measured system and is independent of the details
of the measurement.
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c) The measurement leads to an effective collapse to the two-state vector (v;]|¢;)
corresponding to the observed weak value 4;,. Subsequent adiabatic measurements
- of the same observable A invariably yield the same weak value.

d) Simultaneous measurements of different observables yield the weak values cor-
responding to the same two-state vector (;||#;:).

An effective non-hermitian Hamiltonian can be obtained in a real laboratory in
a natural way when we consider a decaying system and we post-select the cases
in which it has not decayed during the period of time 7" which is larger than its
characteristic decay time. Kaon decay is such an example. |K?) and |K2) are
the eigen-kets of the effective Hamiltonian and they have corresponding eigen-bras
(K7| and (K’%| evolving backward in time. Due to the CP — violation the states
|K?) and |K2) are not orthogonal. However, the mixing is small: [(K2|K?)| <« 1,
and therefore the corresponding backward evolving states are almost identical to

. . 0 _ 0 _ 1 .
the forward evolving states: |(K'g|K3)| = KK'L|K?)| = TTRITRT Thus_, it
is difficult to expect a large effect in this system and for a realistic experimental
proposal one should look, probably, for another system.

7 Conclusions

We have shown that weak values emerge in procedures which are very close to the
standard quantum measurements. The procedures are: (i) weak measurement per-
formed on ensemble of pre-selected quantum systems, (ii) adiabatic measurement
on a single system with a non-degenerate energy spectrum, (iii) weak measurement
on pre- and post-selected ensemble, (iv) adiabatic measurement on a single system
described by a non-hermitian Hamiltonian. In cases (i-ii) the weak values are just
expectation values but in cases (iii-iv) the weak values might lie outside the range
of eigenvalues. These results can be explained as a peculiar interference effect of
the pointer variable of the measuring device (for computer simulation of these in-
terference effects see Vaidman, 1995 and Unruh, 1995) but they are most naturally
explained in the framework of the two-state vector formalism.

In fact, the measurements discussed above are not just gedanken experiments. Ex-
periments of type (i) are frequently performed in laboratories: in many cases the
individual measurement can not reach the required precision and the measured
quantity is found from a measurement on an ensemble of identically prepared sys-
tems (but not all such cases correspond to weak measurements). Some types of
elastic scattering experiments might fall under category (ii). There were several
experiments of the type (iii). The best example, probably, is photon polarization
measurement (Ritchie, 1991). T do not know about any performed experiment of
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type (iv). The most promising is a subclass of such experiments which consist of
‘adiabatic measurements performed on a decaying system which has not decayed
yet. We do not know for what decaying system the weak values can emerge in
adiabatic measurements in today’s laboratory. We leave it as a challenge to find
such realistic proposals.
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