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INTRODUCTION

When the word “quantum” first entered the language of physics, it meant a
restriction on possible values of cnergy, and it is still axiomatic that the only
obscrvable valucs of a physical quantity are the cigenvalues of a corresponding
quantized operator. When we obtain values that are not cigenvalues, we interpret
them as errors. Still, mecasurements arc uncertain in practice and can cven yield
classically forbidden, “unphysical” values. We have uncovered remarkable regulari-
tics in the way that “unphysical” values can appear in sequences of measurements,
suggesting that these values may not be unphysical at all. In quantum theory, it
scems, not only arc physical quantitics not restricted: they can take values outside the
classically allowed range. Here, we discuss this new cffect in the context of barrier
penctration by quantum particles.

Barricr penctration, such as tunncling out of a potential well, is a classically
forbidden quantum process. Quantum particles can be found in regions where a
classical particle could never go: it would have negative kinctic energy. [owever, the
cigenvalues of kinetic energy cannot be negative. IHow, then, can a quantum particle
“tunncel”? The apparent paradox is resolved by noting that the wave function of a
tunneling particle only partly overlaps the forbidden region, whercas a particle found
within the forbidden region may have taken enough cnergy [rom the measuring
probe to oflsct any cnergy deficit. Nevertheless, actual measurements of kinctic
cnergy can yicld negative valucs. Here, we present a model experiment in which we
mecasure the kinctic energy of a bound particle to any desired precision. We then
attempt to localize the particle within the classically forbidden region. The attempt
rarcly succeeds, but, whenever it does, we find that the kinctic energy measurcments
gave an “unphysical” ncgative result; morcover, these results cluster around the
appropriate value, that is, the difference between the total and the potential energy.
This consistency, which scems to come from nowhere (a background of crrors),
suggests strongly that the notion of a quantum obscrvable is richer than generally
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realized. Previous papers making this suggestion have analyzed a measurement of
spin' and a quantum time machine? as well as negative kinetic energy. ™

NEGATIVE KINETIC ENERGY

Our example may be summarized as {ollows: We prepare a large ensemble of
particles bound in a potential well, in an cigenstate of energy, and measure the
kinctic energy of cach particle to a given precision. Then, we measure the position of
cach particle and sclect only those cases where the particle is found within some
region “far enough™ from the well, with “far enough” depending on how preciscly
the kinetic encrgy was measured. In almost all such casces, we find that the measured
kinetic energy values arce negative and cluster around the particular negative value
appropriate to particles in the classically forbidden region. Also, the spread ol the
clustering is the characteristic spread for kinctic energy mcasurements with this
device.

We begin with a particle trapped in a potential well. The Hamiltonian is /1 =
(p212m) + V(x), with V(x) = =V} for |x| < a and V(x) = 0 for |x| > a. We prepare
an cnsemble of particles in the ground state, with encrgy Ey < 0:]'F,) = | Fo).
Following von Neumann,® we model a measurement of kinetic energy with an
interaction Hamiltonian I, = g(t)P(p?/2m), where P is a canonical momentum
conjugate to the position, @, of a pointer on the measuring device. The time-
dependent coupling constant g(r) is nonzero only for a short time interval and is
normalized so that fg(l Ydt = 1. When the time interval is very short, we call the
measurement impulsive. For an impulsive measurcment, 1/, dominates the lamilto-
nians ol the measured system and the measuring device. Then, since @ =
(/) {1, Q, we obtain

p?

Qjm - Qm = Z’-i (1)
for the operator (.

In an ideal measurement, the position of the pointer is precisely defined and thus
we read a precise value of kinctic energy. However, in practice, measurcments
involve uncertainty. To model a source of uncertainty, we take the initial state of the

pointer to be

q)m(Q) = (EI'TT)il/“e‘()l/Z(z_ (2)

The uncertainty in the initial position of the pointer produces errors of order €; when
e — 0, we recover the ideal measurement. Thus, any mcasured value is possible,
although large errors arc cxponentiaily suppressed. There is no mystery in such
crrors; they are expected, given the uncertainty associated with the measuring
device. Measurements can even yicld negative values. The negative values may be
unphysical, but they are part of a distributioh representing the measurement of a
physical quantity. They should not be thrown out because they give information
about the distribution and contribute to the best cstimate of the peak value. Given
the fact that these errors originate in the measuring device and not in the system
under study, it scems that they cannot depend on any property of the system.
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However, closer analysis of these errors reveals a pattern that clearly reflects

propertics of the system under study. The pattern emerges only after selection of a

particular final state of the system.

Initially, the particle and device are in a product state W, (x)D,(Q); after the
interaction is complete, the stale is e @2 2y, (), (), in which the particle and
the device are correlated. Now, we consider Kinetic encrgy measurcments followed
by a final measurement of position, with the particle found far outside the potential
well. For the final state, we choose a Gaussian wave packet with its center far from
the potential well,

W (0) = (5%w)" '/41’“("’*"')2/252, 3)

and we require 8 > afi’/me. The condition for the particle to be “far enough” from
the potential well is

axy, > (o?h?/2me)?. 4

Since &2/ 2n = | Eyl, the expressian in the parenthescs is the ratio of the magnitude
of the cffect, |Ey|, to the precision of the mcasurement, €. For more precise
mcasurcments of kinctic energy (e — 0), the final statc is sclected at increasing
distances from the potential well (xy — ).

The state of the measuring device after the measurcment, and after the particle is
found in the state Wy, (v), is obtained by projecting the correlated state of the particle
and measuring device onto the final state of the particle, ¥, (x). Apart from
normalization, it is ¥4, (Q) = <‘l’ﬁ,,|e’(’/")”’z/2’”|‘I",,)(l),,,(Q ). For simplicity, we take
V(x) to be a delta-function polential (a — 0). Then, W, (x) is Ja exp(—ajx]). As an
integral overx, the final state is

‘D,;,,(Q) = f_m dx c—(xu“)l/zale G/ g =aly b, (Q) (5)

up to normalization. Note that the exponential of —il’p?/2nh acts to translate Q in
D,,(Q). If we could ignore the part of the integral nearx = (), we could replace p? with
—a? in cquation 5 and the final state of the measuring device would be ¥ (Q) =
Dy (Q + 1 /201). We cannot ignore this part of the integral, but we can suppress it
by choosingx; in W, (x) to be large. If we express 7, (x) via its Fouricr transform and
replace the operator p with its cigenvalue, we obtain (up to a normalizing lactor)

—pzf\z/zll2 —ipxo/h

m 23249 ¢ 9
(l)fiu(Q) = (;IE) g0 -2 f (,I) (I)m(Q - [)5/2’”)' (6)

(a2 + p?)
This integral has poles at p = *iah; we evaluate it by integration on a contour
including a linc of p with imaginary part —ipy, for any py > ha. The integral in
cquation 6 then reduces to two terms: a pole term,

D, (Q + 22/ 2m), (7)

and a corrcction term, the integral in equation 6 with p replaced by p — ipy. The pole
term represents the measuring device with its pointer shifted to the negative value of
—a2h/2m. A short computation (sce reference 4) shows that the correction term can
be made avbitrarily small by taking x, large, as in equation 4. For x; large, the final
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state of thec measuring device shows the “unphysical” result of —a?h%/2in for the
kinctic energy, up to a scatter e characteristic of the device.

We thus obtain a correlation between position measurcments and prior kinetic
energy measurements: nearly all particles found far outside the potential well yiclded
negative values of kinetic energy. On the other hand, we could consider all particles
that produced negative values of kinetic energy and could ask about their final
position. We would find ncarly all these particles inside the well. The correlation
works one way only. Prior kinctic energy measurements on particles found far from
the well cluster around a negative value, but position measurements on particles
yiclding negative values of kinetic energy cluster around zcro. How do we intcrpret
this onc-way correlation?

INTERPRETATION

Our cxample suggests that particles in a classically forbidden region have
negative kinetic energy. The conventional interpretation of quantum mechanics has
no place for negative kinctic energy. However, the conventional interpretation
involves an assumption about how measurcments arc made, The conventional
interpretation considers measurements on cnsembles of systems prepared in an
initial state, without any conditions on the final state of the systems. Such an
cnsemble, defined by initial conditions only, may be termed a preselecied cnsemble.
By contrast, we consider measurements made on preselected and postselected en-
sembles, delined by both initial and final conditions. The experiment of the previous
scction is an cxample of a measurement on a preselected and postselected ensemble.
It is natural to introduce presclected and postsclected ensembles in quantum theory:
in the quantum world, unlike the classical world, complete specification of the initial
state does not determine the final state.

Also, the measurements that we consider are not ideal. Real measurcments arc
subject to error. At the same time, the disturbance they make is bounded. These two
aspects of nonideal measurements go together. Suppose our measuring device
interacts very weakly with the systems in the ensemble. We pay a price in precision.
On the other hand, the measurements hardly disturb the ensemble and therefore
they characterize the ensemble during the whole intermediate time. Even noncom-
muting operators can be measured at the same time if the measurcments are
imprecise. When such measurements are made on preselected and postselected
ensembles, they yicld surprising results. An operator yields weak values that need not
be cigenvalues or even classically allowed."$ The negative kinclic cnergy of the
previous section is an example of a weak value. Another is a measurable value of 100
for a spin component of a spin-1/2 particle.!

Let us briefly review how weak values arise. The initial wave function of the
measuring device is @;,(Q). After an impulsive measurcment of an operator C on an
initial state |a), and projection onto a final state {b), the final state of the measuring
device is (D e~ a)D,, (Q ) = Ll |e)ei|a)Pu O — ¢;). If Dy, (Q) is sharply peaked,
then the various terms @,,(Q ~ ¢;) will be practically orthogonal. However, supposc
D(Q2) has a width of e. Its Fouricr transform has a width in P of #ife. Small |}
corresponds to a measuring device that is coupled weakly to the measured system. If
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e is large, then | P] is small and we can expand the exponential e=#¢/* (o first-order in

P 1o obtain (b]e M ayb(Q) = (b1 — iPC/h|a)P(Q) = (bla)e P D(Q). Here,

C,, = (a|C|b)/{a|b) is the weak value of the operator C for the presclected and

postselected ensemble defined by (b} and |a).

The definition of a weak value provides us with a new and intuitive language for
describing quantum processes. In our example, the operators of total energy I,
kinetic encergy K, and potential cnergy V' do not commute. Therefore, the classical
formula E = K + V applics only to their expectation values, and the expectation
valuc of K in any state is positive. However, the formula applies to weak values, [, =
K, + V,,, and the weak value of K is not necessarily positive. We know that £, = £ =
—ah?/2m because the preselected state is an encrgy eigenstate, and that V,, vanishes
because the postsclected state is far from the potential well. Then, K, = — o2h2/2m,
the “unphysical” result obtained above in our example. '

In our example, instead of the condition on the initial state of the measuring
device (e large), we had a condition on the final state of the particle (xy large and 8 >
afi*/me). The price is that we must wait for increasingly rarc events. As measure-
ments of kinetic energy become more precise (e — (1), they disturb the particle more.
To get negative kinetic encrgics, we must postselect particles further from the
potential well (xy — «). As the precision of the measurement increases, negative
kinctic energics become less and less frequent; in the limit of ideal measurcments,
the probability vanishes and thus ideal measurements of kinetic energy never yield
ncgative values.

CONCLUSIONS

From the point of view of standard quantum theory, all that we have produced is
a game of crrors of measurement. Ideal mecasurements of kinetic energy can yicld
only positive values because all cigenvalues of the kinetic encrgy operator arc
positive. However, in practice, measurements are not exact and, cven if their
precision is very good, sometimes—rarely—they yicld negative values. If particles arc
subscquently found far from the potential well, we have scen that the measured
kinctic energy of these particles comes out negative. Consistently, large measure-
ment “cerrors” did occur, producing a distribution peaked at the “unphysical”
negative value £,

What special propertics of nonideal measurecments led to this result? First, these
measurcments involve oaly bounded disturbances of particle position. Second,
because their precision is limited, they can supply, “by error”, the necessary negative
values. These two properties are intimately connected: any measurement of kinctic
energy causing only bounded changes of position must occasionally yicld negative
values for the kinctic encrgy. The change of x due to the measurement is x =
(¢/Mg(ey[x, Pp2/2m]. P and p are unchanged during the measurement, so x5, ~ X, =
Pp/m. From here, it follows that the change of.x is bounded only if the pointer is in an
nitial state with 2 bounded, that is, if the Fourier transform of @,,(Q)) has compact
support. Then, however, the support of @, (Q) is unbounded,” which immediatcly
implics a nonzero probability for the pointer to indicate negative values (Q < 0).
Indced, the “game of errors” displays a remarkable consistency, and this consistency
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allows negative kinctic enecrgies to enter physics in a natural way. The concept of a
weak value of a quantum operator gives precise meaning Lo the statement that the
kinetic energy ol a particle in a classically forbidden region is negative: namely, the
weak value of the kinetic energy is negative.

6.
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If the Fourier transform of &,,(()) has compact support, then @, (Q) is analytic. The two
derivations of our result, via contour integration in the second section and via Taylor
expansion of the exponential in the third section, both require 4y, (Q ) to be analytic.



