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ABSTRACT

We report results of an investigation of relativistic causality constraints on the
measurability of nonlocal variables. We show that measurability of certain nonde-
generate variables with entangled eigenstates contradicts the principle of causality,
but that there are other, certainly nonlocal, variables which can be measured with-
out breaking causality. We show that any causal measurement of nonlocal variables
must erase certain local information. For example, for a system of two spin-1/2 par-
ticles, even if we take the weakest possible definition of verification measurement,
verification of an entangled state must erase all local information.

1. Measuring Momentum of a Particle

As early as 1931, Landau and Peierls' showed that relativistic causality im-
poses new restrictions on the process of quantum measurement. Although some of
their arguments were not precise, it was commonly accepted that we cannot measure
instantaneously nonlocal properties without breaking relativistic causality.

The first example is the measurement of momentum of a particle. Consider
a particle localized in a small region. Measurement of its momentum, irrespective
of the outcome, will spread the particle all over the space. There will be a non-
zero probability to find the particle at a very large distance from its original place
immediately after the (instantaneous) momentum measurement, so it seems that the
particle moves faster than light. However, this argument is not decisive. Relativistic
causality states that it is impossible to send a sigrnal with superluminal velocity.
It does not forbid instantaneous measurement of momentum, say at ¢ = 0. The
instantaneous measurement interaction will take place all over the space and it
can create particles everywhere. Thus, the probability of finding the particle at
a given location after the momentum measurement might be independent of what
we did to the particle located far away before the measurement. Therefore, the
possibility of instantaneous momentum measurement does not lead automatically
to the possibility of sending signals with superluminal velocity.

Nevertheless, if we can measure the momentum of a spin-1/2 particle without
affecting its spin, then we can violate causality. Indeed, let us assume that we know
that at time ¢ = 0 the momentum measurement will be performed. At the time
t = —c we decide to prepare the state of the particle “up” or “down” according
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to the signal we want to send. Then we can measure the spin component of the
particle which is detected at time t = +¢ far from its original location and thus send
information with superluminal velocity. (The probability of finding the particle at
a given place is very small, but we can use a large ensemble of identical particles
and thus we can build a reliable superluminal transmitter.)

2. Constraints on Nonlocal Measurements of Two Spin-1/2 Particles

Although momentum measurement is a basic problem, it is still not the
simplest example we may consider. Significant progress in understanding causality
constraints on quantum measurement was made by considering an even simpler
example: measurements of spin variables of two spin-1/2 particles separated in
space. This is the system on which Bohm and Aharonov? and later Bell® analyzed
the EPR argument and reached far-reaching conclusions regarding the nonlocal
structure of quantum theory.

In order to show how measurability of nonlocal variables contradicts rel-
ativistic causality let us consider an operator with the following nondegenerate
eigenstates:
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This operator corresponds to a nonlocal variable because its eigenstates are nonlocal.
We call the state of the composite system nonlocal when it cannot be represented
as a product of states corresponding to localized parts of the system; these states
are also known as entangled states.

Let us show that the measurability of this variable contradicts relativistic
causality. To this end we perform the following set of measurements:

i} We prepare state | 1); of particle number 2 a long time before the time
t=0.

1) At time t = —e we prepare state | 1), or | }); of particle number 1 according
to the message we want to send from particle 1 to particle 2.

11} At time t = 0 we measure the variable defined by the nondegenerate
eigenstates of Eq. (1).

iv) At the time t = ¢ we measure the spin component of particle 2.
The two events, choosing the spin of particle 1 and measurement of the spin of
particle 2, are space-like separated, and therefore must be causally disconnected.
But if we choose spin “up” for particle 1, then the state of the composite system
before the time t = 0is | 1), 1),, the measurement at the time ¢t = 0 does not change it
(since it is an eigenstate), and thus the spin measurement of particle two will yield
“up” with probability one. If, instead, at the time t = —¢, we put, the particle 1 in
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the state “down) then the state of the composite system before the measurement
(iii) 1s | 1),] 1),- This state is not one of the eigenstates of the nonlocal operator,
and therefore the measurement at time t = 0 will change it. Since the scalar product
between | |),| 1), and the eigenstates is not vanishing only for the eigenstates |y3)
and [44), the state after ¢ = 0 will be one of those. But for both |¢3) and |y,) the
probability to find the spin “up” for particle 2 is just 1/2. We have shown that the
possibility of measuring nonlocal variable described by eigenstates (1) allows us to
change the probability of the result of a spin measurement performed on particle
2 by acting on particle 1 a time only 2¢ before the measurement on particle 2; and
since the distance between the particles might be larger than 2ec, this procedure
represents a superluminal signal transmitter.

3. Measurable Nonlocal Variables

The examples above may lead us to believe that measurement of any nonlo-
cal variable breaks relativistic causality. This, in fact, was generally believed until
Aharonov and Albert? found a method involving solely local interactions (hence con-
sistent with the causality principle) which does allow us to measure certain nonlocal
variables. In particular, we can measure the variable o,, + 02,. The method applies
the standard von Neumann measuring procedure to a measuring device consisting of
two parts which were prepared in an entangled state before the measurement. Each
part of the measuring device interacts with one of the particles for a short time,
and is observed immediately after by a local observer. The combined observations
of the two observers (one at each particle) determines whether the state is |¢1), |¥2)
or belongs to the subspace spanned by [¢3) and [4). The feature of this method is
that while it measures o), + 09, = 0, 1t does not measure the spin of each particle
separately. The details of the method of nonlocal measurements can be found in
Ref. (5).

It might seem that the measurability of the operator ¢,, + o2, has something
to do with its having a complete set of eigenstates which are not entangled. But this
is not the explanation. The next example shows an operator with nondegenerate
eigenstates that are all entangled but which is, nevertheless, measurable by local
interactions. The eigenstates of the nondegenerate operator are
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This operator can be measured® using a set of nonlocal operators with degenerate
eigenstates (such as o1, + 02,), where the particles 1 and 2 are far from one an-



352

other. Recently? the measurability of operators for two spin-1/2 particles has been
analyzed, and it was shown that the only measurable nondegenerate operators are
those with eigenstates of two possible types:
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with spin polarized “up” or “down” along directions z and 2’.

Operators of type (3a), although they refer to two separated spins, are effec-
tively local. They can be measured simply by measuring the z component of spin
of the first particle and the 2/ component of spin of the second particle. Operators
with the eigenstates (3b) are truly nonlocal. They can be measured” in the same
way as an operator with eigenstates given in Eq. (2) (a particular case of Eq. (3b)).

On the other hand? measurability of any nondegenerate operator with eigen-
states not equivalent to the forms (3a) or (3b) implies the possibility of superluminal
communication, i.e., violation of relativistic causality.

4. State Verification Measurements

A measurement of a nondegenerate operator is also a state verification mea-
surement for all its eigenstates. The weakest possible definition of a state verification
measurement which requires only reliability of the measurement is: the verification
measurements of the state |i9) must always yield the answer “yes” if the measured
system has the initial state |o), and must always yield “no” if the system is ini-
tially in an orthogonal state. One may suspect that the verification of a state with
canonical form (Schmidt decomposition) different from

\/‘(]T sz 2+Il)[lz’)2) (4)

(the form of the eigenstates in (3b)) contradicts relativistic causality; i.e., that
verification of a state

1) = ol 1)l Tada + Bl Lol Lar)2, | # 1Bl #0 (5)
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allows superluminal communication. Indeed, it has been shown® that the type
of measurements of entangled states described above, i.e. nondemolition operator
measurements with solely local interactions, cannot measure the state given by the
form (3).

However, an unmeasurable quantity should not represent physical reality. If
we want to consider the quantum state as a physical (versus purely mathemati-
cal) concept, it must be measurable. We do know how to prepare this state (the
preparation procedure is also frequently called measurement). But the state (5) can
also be measured using a new type of verification measurement named an ezchange
measurement® The idea is to make simultaneous short local interactions with parts
of the measuring device such that the states of the system and the measuring de-
vice will be exchanged. The novel point in this method is that local interactions
exchange nonlocal states. The result of the measurement cannot be read by two
local observers; we must bring the two parts of the measuring device to one place.
In addition, this procedure has another unconventional property. The final state of
the system is completely independent of its initial state: it is just the initial state
of the measuring device. The state of the system is completely erased by this state
verification measurement.

It has recently been proven? that any verification of the state

1) = af Tl Tada + Bl Lol Lar)e, @, B#0 (6)

erases all local information. The probable outcome of a local spin measurement
performed after the state verification measurement is independent of the state of the
composite system prior to the state verification. The example considered above of a
measurable nondegenerate operator (2) trivially fulfills this result: for all eigenstates
we have the property that the probability for any outcome of local spin measurement
is the same. There is no local information after this nonlocal measurement.

5. Conclusions

Let us formulate the last result for the somewhat more general case of a
system of two separated particles with several orthogonal states. Consider the
Schmidt decomposition of a state |y, of this composite system:

[¥o) = Zafﬁ)lli)z- (7)

Here [3); and |i)2 are local orthonormal bases of states of the two particles. Let
us denote by #() and H® the Hilbert spaces of part 1 and part 2 respectively,
and by H{V and H{® the subspaces of H") and H® which are spanned by the base
vectors |5); and i), corresponding to coeflicients «; # 0. Then for all initial states
which belong to the Hilbert space H{V® H®| the probabilities p(y) for results of
local measurements in part 1, performed after verification of the state {0}, have no
dependence on the initial state.
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Thus, the erasing effect of the proposed “exchange” measurements is a gene-
ric property of any reliable, causal state verification measurement. The full impli-
cations of this result are not yet clear. It already has helped complete the analysis
of measurability of nondegenerate operators discussed above. It also has been used
to show? that measurability of certain ideal measurements of the first kind contra-
dicts relativistic causality, thus placing a serious doubt concerning the possibility
of generalizing axiomatic quantum theory to the relativistic domain.

We would like to conclude by stressing the importance of measuring nonlocal
properties via local interactions (with separate parts of the measuring device pre-
pared in an entangled state). The same method can be used for so-called “multiple-
time” measurements® which open the way to many new quantum phenomena?
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