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The present considerations first arose in the context of an ongoing attempt to think
carefully about what quantum mechanics allows us to infer about the past. My
collaborators and I had for some time been thinking, more particularly, of ensembles of
quantum mechanical systems that are defined by both preseléction and postselection.
Consider, for example, a spin-'/ system (with zero Hamiltonian) measured on Monday
to be in the state, L, = -+ %, and which is measured on Friday to be in the state, L, =
+1h. If it so happens that L, was measured on that system on Wednesday, then, of
course, that measurement finds with certainty that L, = +14, and if it happens that L,
was measured on that system on Wednesday, then that measurement finds with
certainty that L, = +'4; thus, these two facts seem to amount to saying that for such a
system as this, on Wednesday, L, = +'4and L, = + 1, albeit (L,, L,) # 0. On the other
hand, it seems, at first sight, to be impossible to give two such assertions as these any
experimental meaning at any singie time for any single system, because if both L, and
L, are measured on Wednesday, those two measurements disrupt one another, and the
results, L, = +'4 and L, = =Y, will no longer be invariably obtained. We began to
wonder at a certain point whether those disruptive effects might somehow be controlied
or eliminated by somehow reducing the accuracy with which L, and L, are measured. It
was this wondering that eventually produced what is to follow. We will begin by briefly
reviewing what quantum mechanical measurements are.

Von Neumann's famous account of the operations of quantum mechanical
measuring devices runs roughly like this: In order to measure some given observable, A4,
of a quantum mechanical system, S, what is required is that one produce a
Hamiltonian of interaction between S and a measuring device, which has the form,

Hyy = ~g(1)g4, : (1)

where ¢ is some internal variable of the measuring device, and g(¢) is a time-dependent
coupling function that is nonzero only during some short interval, t, < f < 7,, when the
measuring device is “switched on.” Then the measurement is accomplished as follows:
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the Heisenberg equation for , where = is defined to be the canonical momentum
conjugate to the canonical coordinate, g, of the measuring device, reads

or -
e g()4; @

therefore, if  is initially set, say, at zero, and if the value of _/;' g(r)dt is known, then
the value of 4 at ¢ = ¢, = ¢, can be read off from the value of = after ¢, (thus  is often
referred to as the “pointer variable™).

The fact.that any precise measurement of 4 must necessarily and uncontrollably
disturb the values of observables that fail to commute with 4 can be traced, within this
account, to the fact that a precise measurement of A requires that the value of = be
precisely fixed prior to ¢, Consequently, this also requires that the uncertainty in ¢
during the measurement interaction described in equation 1 (and hence, as well, the
possible strength of that interaction) is unbounded.

On the other hand, it emerges quite clearly within this account that if one is willing
to accept uncertainties in the initial value of ¢, along with the resultant inaccuracies in
the measurement of A, then the uncertainties in the value of g during the measurement
interaction, and hence, the possible strength of that interaction, and the disturbance
caused by it to variables of S that fail to commute with A, can be bounded and
controlled. We shall refer here to such a trading-offi—specifically, to the sacrificing of
the accuracy of measurements of A in order to gain some control of the disturbances
caused by such measurements to variables that fail to commute with A4—as a
weakening of the measurement of 4; and our present concern shall be to point out a
most extraordinary statistical property of such weakened measurements, which we
have recently discovered.

Consider a system of N spin-i; particles (the Hamiltonian of which we shall
suppose, for simplicity, to be zero). Suppose that at the time 7, a precise measurement
of the total angular momentum of this N-particle system in the x-direction (L) is
carried out, and that this measurement produces the (largest possibie) result L = 12V,
furthermore, suppose that at time ¢, (¢,> ;) a precise measurement of L, is carried out
on this system, and that this measurement happens to produce the result L, - hN
(such pairs of results, when N is large, will of course be rare, but they are nonetheless
always possible; we should like to confine our attention here to a system wherein sucha
pair of results happens to have emerged). If we are fater informed that another precise
measurement of L,, say, was carried out at time ¢, with #; < ¢, </, then (as is well
known) we could assert with certainty that the result of that measurement must have
been L, = 12N (because otherwise the result of the measurement at ¢, could not have
been what it was); similarly, if we are later informed that a precise measurement of L,
was carried out at t, with t, < t, < t,, we would be in a position to assert with certainty
that the result of that measurement must have been L, = 14V, Indeed, it is even the
case that if we were later informed that a precise measurement of L, was carried out at
t, and a precise measurement of L, was carried out at t,, with ¢, <, < t, < 1, then we
should be in a position to say with certainty that the result of the measurement of 1, was
L, = 4N and that the result of the measurement of r, was L, = 12 V. However, it should
be carefully noted that in this last case, the time-order of the two intermediate
measurements is vitally important. These two measurements, after all, being precise,
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will uncontrollably disturb one another; thus, in the event that 1, < 1, < 1, < 1, there will
in general be no correlation whatsoever between the results of the measurements of ¢,
and 1,, nor between the results of those at £,and ¢,. !

Suppose, however, that we were to weaken these two intermediate measurements in
such a way as to gain some considerable control over (or even to eliminate) the
disturbances they cause to one another. Suppose, more particularly, that the initial
state of the measuring device is arranged in such a way as to bound the possible value of
q as follows: |

lgl < )

1
(N/z)l/zu’
where ¢ may be an arbitrarily small positive number. In that case, the resultmg
uncertainty in 7 will be of the order of VN/2, which, if NV is taken to be large.us small
compared with the maximal possible values of L, and L,; therefore, measuring devices
prepared in this way can still serve (albeit imperfectly) as reasonably informative
indicators of the values of those angular momenta. On the other hand, if we sc‘t
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for each of these devices, then the bound (equation 3) on g will guarantee that
measurements of L, say, with such devices as these, will change the value of L, only by
amounts of the order of \/Wi, which is (as we have just seen) within the intrinsic error
associated with these measurements. Such weakened measurements of L, and L,, then,
can be expected, as it were, to “commute”; it can be expected, that is, that two such
measurements will verifiably leave one another’s results essentially undisturbed.

Reconsider, now, the system of N spins described above, which was measured,
precisely, at time ¢, to be in the state L, = |4V and at t, to be in the state L, = ' V.
Suppose that we are informed later on that a weak measurement of L,, of the kind we
have just described, was carried out at £, (¢, < 1, < t,). Then, especially if ¥V is large. it
can be asserted with a high degree of confidence that the result of this weakened
measurement was L_ = 42 /N (more precisely, it will be the case that if (L,) =~ 0 before
the interaction begins, then it will invariably be the case that {L,) = AN after ¢,
where = is the pointer variable of the weakened L, measuring device; furthermore ilNv
is large, the uncertainties in g, both before and after the experiment, will be very small
compared with this displacement in its expectation value); thus, by virtue of the
time-reversal-symmetric character of the statistical predictions of quantum theory, the
same argument can be made concerning a weak measurement of L, that may have been
carried out at f, within that same interval. Clearly, no additional complications are
introduced by supposing that both measurements (first the measurement of L, and

. then that of L)) are carried out within that interval, as we did above; however, in the
present case, because of the “commutative” behavior of these weak measurements, we
also expect that the order in which they are carried out will make no difference. Indeed,
it can easily be confirmed by straightforward calculation that whether ¢, < t0r ¢, < ¢y,
the expectation values of the pointer variables of both the L, and the L, measuring
devices will, in the circumstances described above, be displaced by precisely (up to
corrections of the order of JfVTi) hN

This produces something of a paradox, which runs as follows: Suppose that instead
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(as above) of measuring the value of L, of time ¢, and the value of L, of time ¢,, we
measure, with a single device, the sum of those two values. Such a measurement can
easily be accomplished by means of an interaction Hamiltonian of the form,

L L
Hyy - g.(t)qT’Z + gz(t)q—‘/’;. {5)

where g, () is nonzero only in the vicinity of ¢,, and g,(1).is nonzero only in the vicinity
of ¢, (the factors of 1/\/5, as the reader shall presently see, have been inserted for the
sake of convenience). Furthermore, if “weak” bounds of the form of equation 3 are
imposed on ¢, and in cases where L, is precisely measured to be 4N at ¢, and L, is
precisely measured to be 14N at ¢, the total displacement of the expectation value of =
after both ¢, and ¢, will, by the above arguments, always be (up to corrections of the
order of YN/2) N/V2, whether 1, precedes ¢, or f, precedes f,, or, indeed, t, = ¢,
However, consider this last possibility. In the event that £, = ¢, [in the event, that is,
that g,(¢) = g,(¢)], the interaction Hamiltonian of equation 5 reduces to

L.+ L
Ho = (00 =2, ©)

which is the Hamiltonian required for a measurement of the projection of the total
angular momentum along the a-axis (L,), where ais the ray that bisects the right angle
between x and y. Now, we have just argued that this measurement will (within such
intervals as we have just described, and so long as ¢ is bounded in accordance with
equation 3) almost invariably produce the result N/VZ; however, this seems a most
paradoxical result, because the particular measurement here in question is (looked at
in another way) simply a measurement of L, the largest possible eigenvalue of which is
the vastly smaller number '2/N. How can it be that measurements of L_, under these
circumstances, with such regularity, produce impossible results?

The first thing to do, it would seem, is to verify the result of our argument by more
rigorous techniques, and this, happily, is not a particularly difficult task. The state of
the composite system consisting of the IV spins together with the L_-measuring ap-
paratus after the L -interaction is complete, and supposing that L, was found to have
the value, N/2, at ¢,, will be

lq L_"j_._[l = E =

=5 [L, 2){1r-0), Y
wherein we have supposed, for simplicity, that g,(f) has the value of 1 whenever the
measuring device is “switched on,” and wherein | = = 0) represents the initial state of
that device, which (in accordance with equation 3) will be characterized by some
Gaussian distribution of w-values, of width, \/Wf, and peaked, say, about w = 0. Now,
if it subsequently happens that at ¢, L, is found to have the value, N/2, then the final
state of the measuring apparatus (modulo an overall constant of normalization) will
be

N L +L, N . |
<Ly 2|€ T[LI-Z |1r=-0), (8)

thus, the time-evolution operator for the measuring apparatus through such a sequence
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Also, it can rigorously be shown (without too much trouble) that if g is taken to obey
the bound (equation 3), then [

N o L+L, N 1 i
A P R Bt 2 SR WO/ — i
<L, 2Ie N L, 5 e +0N' ‘(10)

as NV becomes large. The effect of such a sequence of events, then, in this limit, is
invariably to translate the initial |w = Q) apparatus state by the impossible (or at least,
at first sight, unreasonable) distance of N/v2, rather than (what would seem more
reasonable) a distance equivalent to any of the eigenvalues of L, which is precisély as
our earlier (and more intuitive) argument had led us to believe. i
What is happening here (albeit the demonstration is quite straightforward) is
something of a miracle. The measuring apparatus state is translated, in the course of
these events, by a superposition of different distances corresponding to the various
possible eigenvalues of L; the resultant translated states, in the end, will quantum
mechanically interfere with one another in such a way as to produce an effective
translation that is larger than any of them. In such sequences of events, everything in
the final apparatus states, save the outermost limits of the tails (which must necessarily
exist given equation 3) of the translated w-distributions, ends up canceling itself out;
the central peaks annihilate one another and disappear, and what remains is a new
peak, made up of constructive interferences among the many tails, way out in the
middle of nowhere at N/2. Moreover (and this is what seems genuinely miraculous),
the nature of these anomalous interferences is precisely such as to make the L, and L,
components of the total angular momentum (both of which have the value, N/2)
appear, as measured by our weak experiments, to add together in L as if they were
components of a classical vector. These, strictly speaking, are of course errors of the
measuring apparatus, but they are errors of an astonishingly subtle, systematic, and
sensible kind; they are errors that (given initial and final conditions on the spins such as
we have postulated here) invariably arise, and that conspire to point an internally
consistent picture of a classical (rather than a quantum mechanical) system. However,
it ought to be kept constantly in mind that such conspiracies among errors as these
necessarily feature exceedingly rare sequences of events; indeed, if such were not the

1

: ‘j_ case, such conspiracies would constitute a genuine difficulty for quantum theory.f

The effect we have just described, needless to say, is one particular example of what
is quite clearly a very broad class of physical phenomena. This broad class of physical
phenomena will arise in countless varieties of physical systems, wherein it may well
take forms that are yet more striking than the one considered here. Our intent in this
present paper has been simply to point out that such a class of phenomena exists;
however, we shall have much more to say on the scope and the meaning of these
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