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Abstract. This paper surveys algorithms that efficiently solve linear equa-
tions or compute eigenvalues even when the matrices involved are too large to
fit in the main memory of the computer and must be stored on disks. The
paper focuses on scheduling techniques that result in mostly sequential data
accesses and in data reuse, and on techniques for transforming algorithms that
cannot be effectively scheduled. The survey covers out-of-core algorithms for
solving dense systems of linear equations, for the direct and iterative solution
of sparse systems, for computing eigenvalues, for fast Fourier transforms, and
for N-body computations. The paper also discusses reasonable assumptions
on memory size, approaches for the analysis of out-of-core algorithms, and
relationships between out-of-core, cache-aware, and parallel algorithms.

1. Introduction

Algorithms in numerical linear algebra solve systems of linear equations and
eigenvalue problems. When the data structures that these algorithms use are too
large to fit in the main memory of a computer, the data structures must be stored
on disks. Accessing data that is stored on disks is slow. To achieve acceptable
performance, an algorithm must access data stored on disks in large contiguous
blocks and reuse data that is stored in main memory many times. Algorithms that
are designed to achieve high performance when their data structures are stored on
disks are called out-of-core algorithms.

This paper surveys out-of-core algorithms in numerical linear algebra. The
first part of the paper, Section 2, describes algorithms that are essentially clever
schedules of conventional algorithms. The second part of the paper, Section 3,
describes algorithms whose dependences must be changed before they can can be
scheduled for data reuse. The final part of the paper, Section 4, explains several
issues that pertain to all the algorithms that are described. In particular, we
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discuss typical memory sizes, approaches to the analysis of out-of-core algorithms,
differences between out-of-core algorithms and cache-aware and parallel algorithms,
and abstractions that are useful for designing schedules. The rest of the introduction
explains why out-of-core algorithms are useful and why they are not as common as
one might expect.

Out-of-core algorithms are useful primarily because they enable users to effi-
ciently solve large problems on relatively cheap computers. Disk storage is signifi-
cantly cheaper than main-memory storage (DRAM).1 Since many out-of-core algo-
rithms deliver performance similar to that of in-core algorithms, an out-of-core algo-
rithm on a machine with a small main memory delivers a better price/performance
ratio than an in-core algorithm on a machine with enough main memory to solve
large problems in core. Furthermore, ubiquitous parallel computing in the form
of scalable parallel computers, symmetric multiprocessors, and parallel I/O means
that buying enough memory to solve a problem in-core is rarely the best way to
speed up an out-of-core computation. If the computation spends most of its time
in in-core computations, the best way to speed it up is to add more processors to
the computer. If the computation spends most of its time waiting for I/O, the best
way to speed it up is often to attach more disks to the computer to increase I/O
bandwidth.

Still, one must acknowledge two trends that cause out-of-core algorithms to
become less attractive to users. First, the size of computer memories, both DRAM
and disks, grows rapidly. Hence, problems that could not be solved in-core in a
cost-effective manner a few years ago can be solved in-core today on machines with
standard memory sizes. Problems that could not be solved in core on the world’s
largest supercomputer 20 years ago, the Cray-1, can now be solved in core on a
laptop computer. (And not because the Cray-1 had a small memory for its period;
it was designed with a memory large enough to make virtual memory unnecessary.)
While users’ desire to solve ever-larger problems does not seem to wane, including
problems too large to fit in memory, growing main memory sizes imply that out-
of-core algorithms have become a specialty.

Second, improvements in numerical methods sometimes render out-of-core al-
gorithms obsolete. Some methods are inherently more difficult to schedule out-
of-core than others. For example, the conjugate gradient method for iteratively
solving sparse linear systems is inherently more difficult to schedule out of core
than the iterative methods that were in use prior to the its discovery. When such
a method is invented, it renders out-of-core algorithms obsolete. The algorithms
described in Sections 2.4 and 3.2 exemplify this phenomenon.

2. Scheduling and Data Layout for Out-of-Core Algorithms

When an algorithm is to to be executed out of core, the ordering of independent
operations must be chosen so as to minimize I/O. The schedule must also satisfy
the data-flow and control-flow constraints of the algorithm. In addition, the layout
of data structures on disks must be chosen so that I/O is performed in large blocks,
and so that all or most of the data that is read in one block-I/O operation is
used before it is evicted from main memory. When there are multiple processors,
the schedule must also expose enough parallelism, and when the data is laid out on

1Today (early 1998), DRAM costs about $5000 per GByte, whereas disks cost about $100
per Gbyte.
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multiple disks, a good schedule reads and writes from multiple disks simultaneously.
This section describes techniques for scheduling and data layout that are used in
out-of-core numerical linear algebra and the algorithms that use these techniques.

Some algorithms cannot be scheduled for efficient out-of-core execution. These
algorithms must be modified, in the sense that their data- or control-flow constraints
must be altered so as to admit an efficient schedule. Techniques for modifying
algorithms so that their data-flow graphs admit efficient schedules are presented in
Section 3.

2.1. An Example: Dense Matrix Multiplication. Several important com-
putations on dense matrices can be scheduled out of core using a simple technique
that was discovered very early. We illustrate this technique in some detail using
matrix multiplication as an example. Specifically, we show that a naive schedule
is inefficient, and that there is a simple schedule that is significantly more efficient
than the naive schedule and asymptotically optimal.

The product C of two n-by-n matrices A and B is defined as cij =
∑n
k=1 aikbkj .

It is easy to see that each term aikbkj appears in just one summation, namely, the
computation of cij . In other words, the output values share no common subexpres-
sions, so the algorithm must compute n3 products. The challenge is to compute
them using a schedule that minimizes I/O.

A naive way to implement this algorithm uses a set of three nested loops:

naive-matrix-multiply(n,C,A,B)
for i = 1 to n
for j = 1 to n
C[i,j] = 0
for k = 1 to n
C[i,j] = C[i,j] + A[i,k] * B[k,j]

end for
end for

end for

Let us analyze the amount of I/O that this schedule performs. We denote
the size of main memory by M , and we assume that main memory cannot store
more than one half of one matrix. That is, we assume that M < n2/2. (We
use this assumption throughout the paper.) All the elements of B are accessed
in every iteration of the outer loop. Since at most half of them can remain in
memory from one iteration to the next, at least half of them must be read from
disk in each iteration. Hence, the total number of words read from disk is at least
n · n2/2 = n3/2. In other words, the number of words transferred2 is proportional
to the work in the algorithm. It is clear that no schedule needs to transfer more
than 4n3 words, or three reads and one write in every inner iteration. Therefore,
our analysis is asymptotically tight: this schedule transfers Θ(n3) words.

Can we do better? We can. There are schedules that transfer only Θ(n3/
√
M)

words. The key to these schedules is considering the three matrices as block matrices
with block size b =

√
M/3. We denote the b-by-b submatrix of A whose upper left

corner is Aij by A[i:i+b-1,j:j+b-1]. The following pseudo code implements this

2When we refer to “transfers” from here on we mean data transfers between main memory
and disk.
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improved schedule; it is not hard to prove that the code implements the same data
flow graph as naive-matrix-multiply, if n is a multiple of b.

blocked-matrix-multiply(n,C,A,B)
b = square root of (memory size/3)
for i = 1 to n step b
for j = 1 to n step b
fill C[i:i+b-1,j:j+b-1] with zeros
for k = 1 to n step b
naive-matrix-multiply(b,

C[i:i+b-1,j:j+b-1],
A[i:i+b-1,k:k+b-1],
B[k:k+b-1,j:j+b-1])

end for
end for

end for

This schedule is more efficient because each iteration of the inner loop of
blocked-matrix-multiply accesses only 3b2 = M words but performs b3 mul-
tiplications. The words that are accessed in the inner iteration need to be read
from disk only once, because all of them fit within main memory, and written back
once.(Actually, a block of C needs to be read and written only every n/b iterations.)
The total number of words transferred is bounded by the number of inner iterations
times the number of transfers per iteration, or

(n/b)3 × 2M = (n/
√
M/3)3 × 2M = O(n3/

√
M) .

This schedule performs a factor of Θ(
√
M) less I/O than the naive schedule.

Can we do better yet? We cannot. The following theorem states that when
main memory cannot store more than about one sixth of one input matrix, the
blocked schedule described above is asymptotically optimal. This result was orig-
inally proved by Hong and Kung [33]; we give here a novel proof which is both
simple and intuitive. Note that the theorem does not bound the number of trans-
fers required to multiply two matrices, only the number of transfers that is required
if we multiply the matrices using the conventional algorithm. Other matrix multi-
plication algorithms, such as Strassen’s algorithm, may require fewer transfers.

Theorem 1. Any schedule of the conventional matrix multiplication algorithm
must transfer Ω(n3/

√
M) words between main memory and disk, where the input

matrices are n-by-n, M is the size of main memory, and M < n2/5.2415.

Proof: We decompose a given schedule into phases that transfer exactly M words
each, except perhaps the last phase.

We say that cij is alive during phase p if during phase p the schedule computes
products aikbkj for some k, and if some partial sum of these products is either in
main memory at the end of the phase or is written to disk during the phase. By
the definition of a live cij , there can be at most 2M live cij ’s during a phase. Note
that for each triplet (i, j, k), the multiplication aikbkj must be performed in some
phase in which cij is alive. A multiplication aikbkj that is performed in a phase
in which cij is not alive does not represent progress toward the scheduling of the
data-flow graph, so without loss of generality we assume that there are no such
multiplications in the schedule.
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There can also be at most 2M distinct elements of A and at most 2M distinct
elements of B in main memory during phase p, because every such element must
be either in memory at the beginning of the phase or it must be read from disk
during the phase. We denote the set of elements of A that are in main memory
during phase p by Ap.

How many multiplications can the schedule perform in phase p?
We denote by S1

p the set of rows of A with
√
M or more elements in Ap, and

by S2
p the set of rows with fewer elements in Ap. Clearly, the size of S1

p is at most
2
√
M .
We begin by bounding the number of scalar multiplications during phase p

that involve elements of A from rows in S1
p . Each element of B is used exactly once

when a row of A is multiplied by B. Therefore, the number of scalar multiplications
in phase p that involve elements of A from rows in S1

p is bounded by the size
of S1

p times the number of elements of B in main memory during the phase, or
2
√
M × 2M = 4M3/2.
We now bound the number of scalar multiplications during phase p that involve

elements of A from rows in S2
p . Each cij is a product of a row of A and a column

of B. The number of multiplications that involve elements of A from rows in S2
p

is bounded by the number of live cij ’s times the maximal number of elements in a
row of S2

p that are in Ap, or 2M ×
√
M = 2M3/2.

We conclude that the number of multiplications per phase is at most 6M3/2.
Since the total number of multiplications is n3, the number of phases is at least
dn3/6M3/2e, so the total number of words transferred is at least M(n3/6M3/2− 1)
(since the last phase may transfer fewer than M words). For M < n2/5.2415, the
number of transfers is Ω(n3/

√
M).

2.2. Dense Matrix Computations. Considering matrices to be block ma-
trices leads to high levels of data reuse in other dense matrix algorithms. In out-of-
core implementations the matrices are stored on disks such that b-by-b blocks are
contiguous, so I/O operations are done in large blocks.

A Cholesky factorization algorithm, for example, factors a square symmetric
positive definite matrix A into a product of triangular factors LLT . Here the
basic operations in the conventional algorithm are multiplication, square roots,
and division by square roots. If we interpret the square root operation on a block
as computing AII = LIIL

T
II (the operation is only applied to diagonal elements),

and division by a square root as a triangular solve, we again obtain an efficient out-
of-core schedule for the conventional algorithm. Interpreting these basic operations
in other ways, however, can change the data flow in the algorithm and hence the
output that the algorithm computes. For example, if we implement the square root
operation by computing a block BII such that AII = B2

II , the new algorithm will
follow a different data flow path and will compute a different result. In fact, the
factor that the new algorithm computes will be block triangular and not triangular.

Algorithms that merely schedule the data flow in the original algorithm are
called partitioned, and those that follow a different data flow graph and potentially
produce different results are referred to as blocked. When a partitioned algorithm
exists it is generally preferable to a blocked one, because blocked algorithms can be
numerically less stable and because they sometimes do more work than the original
algorithms.
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Both partitioned and blocked algorithms were discovered very early. Rutledge
and Rubinstein [45, 46] describe the linear algebra library of the Univac. The
library was operational since 1952, and Rutledge and Rubinstein attribute its basic
design to Herbert F. Mitchell. The library used a partitioned algorithm for matrix
multiplication. This algorithm is still widely used today. The library used a blocked
algorithm for matrix inversion which is now obsolete. The Univac had a 1,000-word
main memory and magnetic tapes served as secondary memory. The algorithms
used 10-by-10 blocks, and the data layout and schedule were organized so that both
in-core and out-of-core accesses are sequential, since both levels of memory were
sequential (the Univac used acoustic delay lines for its main memory).

Other important dense algorithms that can be scheduled for out-of-core execu-
tion include the LU factorization with partial pivoting and the QR factorization.
In these algorithms, the schedule cannot be generated using a partitioning of the
matrix into square blocks, because these algorithms have steps that must access
full columns (or full rows). The partitioning scheme that was developed for these
algorithms is based on a partitioning of the matrix into vertical slabs of groups of
columns.

Barron and Swinnerton-Dyerm [4] described in 1960 a partitioned algorithm for
LU factorization with partial pivoting. They implemented a factorization algorithm
for the EDSAC 2 using magnetic tapes to store the matrix. Their algorithm, which
is now called the block-column right-looking algorithm, is still used today to improve
data reuse in caches. The most widely used out-of-core LU factorization algorithm
today, the block-column left-looking algorithm, was proposed in 1981 by Du Cruz,
Nugent, Reid and Taylor [17]. Their algorithm was developed for the NAG library
as a factorization algorithm for virtual-memory machines. The I/O behavior of the
right- and left-looking algorithms is similar in terms of reads but the right-looking
algorithm performs more writes. A somewhat different algorithm was proposed by
the author recently [53]. This algorithm partitions the matrix recursively, rather
than into fixed block columns, and performs asymptotically fewer reads and writes
than either the right- or left-looking algorithms. It is always faster than the right-
looking algorithm and it is faster than the left-looking algorithm when factoring
large matrices on machines with a small main memory.

A steady stream of recent implementations of dense out-of-core factorization
codes [7, 16, 22, 26, 30, 34, 49, 50, 52, 54, 61] serves as a testimony to the
need for out-of-core dense solvers; most of these papers describe parallel out-of-core
algorithms and implementations.

The first systematic comparison of conventional and partitioned schedules was
published by McKellar and Coffman in 1969 [39], in the context of virtual memory.
They assumed that the matrices are stored by blocks for the partitioned algo-
rithms and showed that the partitioned algorithms generate asymptotically fewer
page faults (I/O transfers) than conventional algorithms. Fischer and Probert [25]
performed a similar analysis for Strassen’s matrix multiplication algorithm.

Hong and Kung proved in 1981 [33] that the partitioned schedule for matrix
multiplication is asymptotically optimal in a model of I/O that allows redundant
computation and does not assume that I/O is performed in blocks. They also
proved lower bounds for other problems that are discussed in this survey, such as
FFTs. Their bounds were later extended to more complex models that assume
that I/O is performed in blocks on multiple independent disks by Aggarwal and
Vitter [1] and by Vitter and Shriver [58].
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The misperception that partitioned schedules require a data layout by blocks
caused partitioned schedules to go out of fashion in the 1970s. Virtual memory was
becoming a standard way to solve problems larger than memory. The convenience
of laying out matrices in two-dimensional arrays that are laid out by a compiler in
column- or row-major order favors storing matrices by column or row, not by block.
The trend to abandon partitioned schedules was apparently also fueled by the fact
that on machines of that period, simply using all the words that are fetched by a
page fault once or twice was enough to achieve high processor utilization. The high
level of data reuse offered by partitioned algorithms was not deemed necessary. An
influential 1972 paper by Moler [40] is typical of that period. In it, he describes a
schedule for LU factorization that access entire columns of the matrix, so that all
the words fetched in a page fault are used by the algorithm. The schedule is not
efficient in the sense that when a typical page is fetched, its content is used once,
and the page is evicted. Moler dismisses the analysis of McKellar and Coffman
on the basis that it requires layout by blocks, which is inconvenient in Fortran.
He ignores the 1960 paper by Barron and Swinnerton-Dyerm [4] that showed a
partitioned schedule that accesses entire columns and does not require a block
layout. Papers describing similar schedules for other problems were published in
the following years [18, 19, 59].

Schedules that guarantee sequential access or access to large contiguous blocks
were always important. In the early days, out-of-core storage used tapes, a sequen-
tial medium, so sequential access was of paramount importance. When disks be-
came the main medium for out-of-core storage, completely sequential access lost its
importance, but access to large contiguous blocks remains important. But sequen-
tial or mostly sequential access can be achieved even with partitioned algorithms,
and even when the matrix is laid out in columns.

2.3. Sparse Matrix Factorizations. Sparse factorization algorithms can be
classified into categories based on two criteria: what assumptions they make on
sparsity patterns and whether they are row/column methods or frontal methods.
Some algorithms assume that the nonzeros are clustered in relatively large dense
blocks (block methods), some assume that the nonzeros are clustered around the
main diagonal (band and envelope methods), while others do not assume any partic-
ular sparsity pattern (general sparse methods). We explain the difference between
row/column and frontal methods later.

Band solvers were popular until well into the 1970s, and were later refined
into envelope solvers. These methods have the property that at any given point
in the factorization, the rows and columns of the matrix can be decomposed into
three classes: done, active, and inactive. The rows/columns that are done have been
factored and they need not be read again. The active part consists of rows/columns
that either have been factored but are needed for updates to later rows/columns
(in a left-looking algorithm), or of rows/columns that have been updated but not
factored (in a right-looking algorithm). The inactive part of the matrix has not
been yet read at all. Some band methods assume that the active part of the matrix
can be stored in core. These methods require Θ(m2) words of in core storage,
where m is the bandwidth of the matrix, and compute the factors in one pass over
the matrix. Riesel [43] describes a 1955 implementation of a sparse elimination
algorithm on the BESK computer at the SAAB Aircraft Company in Sweden. It
seems that he used such a banded algorithm, although he does not describe the
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algorithm in detail. His solver was used to solve linear systems with 214 variables,
which did not fit within the BESK’s 8192-word magnetic drum. Cantin [8] describes
another such algorithm from the mid 1960s, which he attributed to E. Wilson.

When the bandwidth of the matrix is large, the active part of the matrix cannot
be stored in core. The matrix is then partitioned into dense blocks and a partitioned
algorithm is used. These algorithms are essentially identical to dense partitioned
algorithms, except that they do not operate on zero blocks. Cantin [8], Mondkar
and Powell [41] and Wilson, Bathe and Doherty [60] all describe such algorithms
in the early 1970s. The same idea can be used when the nonzeros are clustered in
large dense blocks even when the blocks themselves are not clustered near the main
diagonal. Crotty [14] described such a solver in 1982 for problems arising from the
boundary-elements method in linear elasticity.

General sparse algorithms that are row/column based are usually left-looking.
These algorithms can, at least in principle, be implemented out of core using a
block-column partitioned approach, similar to that used for dense matrices. The
performance of such a method can be significantly worse than the performance of
similar methods for dense and band matrices, however. In dense and band matrices,
the columns that are needed to update a given column or block of columns are
contiguous. In a general sparse algorithm, they are not. Therefore, a simple out-of-
core left-looking algorithm may need to read many small noncontiguous blocks of
data. To the best of my knowledge, implementations of such algorithms have not
been described in the literature, perhaps for this reason.

The general sparse algorithms that have been described are frontal or multi-
frontal, rather than row/column based algorithms. Unlike row/column algorithms
that only store original rows and columns of A, partially updated rows/columns
of A, and rows/columns of the factors, multifrontal algorithms (including simple
frontal ones) store original rows/columns, rows/columns of the factors, and a stack
of sparse matrices called frontal matrices. The frontal matrices are sparse, but
all their rows and columns have the same structure, so they can be stored and
manipulated as dense matrices. If the stack of frontal matrices fits in core, the
algorithm can be implemented out-of-core as a single-pass algorithm. Interestingly,
the maximum size of the stack depends on the ordering of independent operations
in the algorithm. Liu [36] describes techniques to schedule the algorithm so as to
minimize the maximum size of the stack so that the need for an out-of-core algo-
rithm is eliminated in many cases. When the stack is stored out of core, the same
algorithm can reduce the amount of I/O required for out-of-core stack operations.
In another paper [37], Liu describes another technique that can reduce the amount
of memory required for in-core factorization. This technique switches between col-
umn Cholesky and multifrontal Cholesky to reduce running time and/or memory
requirements.

Another technique, similar in motivation to Liu’s techniques, is described by
Eisenstat, Schultz and Sherman [20]. They propose a technique that discards
elements of the factor and recomputes them as necessary, instead of writing them to
disk and reading them later. The method performs more work than the conventional
factorizations, it solve a linear system but does not produce the factors, and it may
fail for very large matrices. But like Liu’s techniques, it does allow one to solve
in-core linear systems that would otherwise have to be solved out of core.

Out-of-core implementations of multifrontal and related factorization methods
are described by George and Rashwan [28], by George, Heath, and Plemmons [29],
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by Bjørstad [5], and by Rothberg and Schreiber [44]. Some of these implementa-
tions can handle frontal matrices larger than main memory by partitioning them,
and recent ones (e.g. [44]) use Liu’s technique for reducing the size of the stack
and hence the amount of I/O performed. Rothberg and Schreiber use another tech-
nique to minimize I/O. Their algorithm can switch from a multifrontal method to a
left-looking method based on a criterion for estimating I/O costs. The general idea
is similar to that of Liu [37], except that Liu switches from a column factorization
to a multifrontal one to save space and Rothberg and Schreiber switch in the other
direction to minimize I/O.

2.4. Sparse Iterative Methods. Iterative algorithms maintain a state vec-
tor x and repeatedly update it, x(t) = Fx(t−1), where F represents the update rule.
When the update in each iteration is a multiplication by a sparse matrix A, such as
in Jacobi relaxation, a simple technique called covering can be used to schedule the
computations out-of-core. The main idea is to load into main memory a subset xI of
the state vector x, perform more than one iteration on at least some elements of xI ,
then to write back the updated elements of x to disk. For example, when the under-
lying graph of A is a

√
n-by-

√
n mesh, this method can perform Θ(

√
M) iterations

while transferring only Θ(n) words. In contrast, the naive schedule that applies
each iteration to the entire state vector before starting the next iteration transfers
Θ(n) words per iteration. The same technique can be used when the state-vector
update represents a sparse triangular or block triangular linear system.

A program called PDQ-5 used this technique to implement an out-of-core solver
for two-dimensional problems arising in nuclear reactor design [42]. The program
was written in the early 1960’s by W. R. Cadwell, L. A. Hageman, and C. J. Pfeifer.
It ran on a Philco-2000 using magnetic tapes to store the state vector. The program
used a line successive overrelaxation (line-SOR) method, in which the update rule
represents the solution of a block triangular linear system. Once the first two lines
in the domain (first two blocks) are relaxed, the first line is relaxed again.

Hong and Kung [33] showed upper and lower bounds on the use of this tech-
nique on regular meshes.

Unfortunately, the majority of modern iterative methods cannot be scheduled
for data reuse. Methods that cannot be scheduled for significant in-core data reuse
include implicit time-stepping schemes, symmetric successive overrelaxation, con-
jugate gradient, alternating directions, and multigrid algorithms (see [55] for lower
bounds for several of these). Indeed, in a 1964 survey paper on computers in nuclear
reactor design [15], Cuthill remarked that alternating directions iterative methods
converge faster than line-SOR methods, but are more difficult to implement effi-
ciently out-of-core.

Consequently, since the mid 1960s most iterative solvers have been implemented
in core. Schedules that access data mostly sequentially have been developed for
virtual memory systems, however. Wang, for example, shows such a schedule for
alternating directions [59]. Another idea that has emerged recently is to modify
the data flow of iterative algorithms that cannot be scheduled for data reuse so that
they can be scheduled. This idea is explored in Section 3.2.

2.5. Fast Fourier Transforms (FFTs). The FFT can be scheduled for out-
of-core execution fairly efficiently. Theoretically, both lower and upper bounds for
the number of words transferred is Θ(n logn/ logM) [33, 1]. In practice, the
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logn/ logM factor is a small constant, rarely larger than 2, so asymptotic bounds
are not particularly useful.

Soon after the introduction of the FFT algorithm by Cooley and Tukey, Gen-
tleman and Sande [27] presented an FFT algorithm which is suitable for out-of-
core applications. The algorithm works by arranging the input n vector in a two-
dimensional array, performing an FFT on every row, scaling the array, transposing
the array and performing an FFT on every row again (every column of the orig-
inal array). Assuming that primary memory can hold at least one row and one
column of the array, the algorithm requires only two passes over the data and an
out-of-core matrix transposition. The algorithm did not gain much acceptance, but
it was rediscovered and implemented on several machines. See [3] for a survey and
a description of an implementation on the Cray X-MP.

Although the total amount of I/O that this algorithm performs is not large
relative to the size of the data set, it often suffers from low processor utilization.
The total amount of work per datum in the FFT, Θ(logn), does not allow for
extensive data reuse. With only a moderate level of data reuse, I/O often dominates
the running time.

Other, less efficient, out-of-core FFT algorithms were proposed by Single-
ton [51] and Brenner [6]. Eklundh [21] noticed that an efficient out-of-core matrix
transposition algorithm is a key to out-of-core two-dimensional FFT algorithms,
and suggested one. Others have also proposed algorithms for matrix transposition,
for example [2, 48, 56].

More recently, a series of papers by Cormen, Wegmann, and Nicols describe
parallel out-of-core FFT algorithms that use multiple disks [11, 12, 13].

The monograph by Van Loan [57] describes numerous FFT algorithms, includ-
ing out-of-core algorithms, together with extensive references. Bailey’s paper [3]
also presents a good survey of out-of-core FFT algorithms.

2.6. N-Body Computations. N-body or fast multipole algorithms are tree
based algorithms for evaluating integrals. In a recent paper, Salmon and War-
ren [47] describe a parallel out-of-core N-body code. The code uses several sched-
uling techniques to achieve high out-of-core performance. The most important
technique is a special ordering of points in space, and hence data accesses to them,
which enhances data reuse. The ordering is based on a self-similar space-filling
curve. This ordering was developed to enhance locality in caches and in distributed
memory parallel computers, but it proved suitable for an out-of-core implementa-
tion. The other important algorithmic technique that they use is essentially loop
fusion. They fuse several passes over the data that were originally separate into
as few traversals as possible, in order to minimize I/O. They comment that this
scheduling technique enhances performance but reduces the modularity of the code,
because tasks that are conceptually unrelated are now coded together. They report
good performance using a cluster of Pentium Pro computers.

Most implementations of out-of-core algorithms in numerical linear algebra
either perform I/O data transfers explicitly or rely on the virtual memory system
to perform data transfers. In contrast, Salmon and Warren use a hybrid scheme
that can best be described as a user-level paging mechanism.
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3. Data-Flow Transformation Techniques

When the data flow of an algorithm does not admit an efficient out-of-core
schedule, the designer must develop an algorithm with a more suitable data-flow
graph. The new algorithm may be a “transformation” of the original algorithm, or
it may be completely new. By transformation I mean that the two algorithms are
equivalent in some sense, although there is no clear distinction between transformed
algorithms and completely new algorithms.

Numerous parallel algorithms can be thought of as transformations of conven-
tional sequential algorithms. Parallel summation is probably the simplest example.
An algorithm that adds n numbers to a running sum has a deep data-flow graph
that does not admit a good parallel schedule. An algorithm that sums two n/2
groups of numbers recursively and then adds up the two partial sums has a data
flow graph with depth logn that admits an efficient parallel schedule. If addition
is associative, the two algorithms are algebraically equivalent. Floating-point ad-
dition is not associative, but the two algorithms are essentially equivalent for most
practical purposes. This is not always the case. Some sequential algorithms are
significantly more stable than their (transformed) parallel versions. For example,
the data-flow graph of Modified Gram-Schmidt orthogonalization contains less par-
allelism than the data-flow graph of Classical Gram-Schmidt, but it is significantly
more accurate. Transformed algorithms sometimes perform significantly more work
(arithmetic) than their sequential counterparts. For example, parallel algorithms
for solving tridiagonal systems of linear equations usually perform at least twice
the amount of arithmetic that sequential algorithms perform. Another example is
Gauss-Seidel relaxation, which often converges more slowly when the unknowns are
reordered to maximize parallelism (e.g., red-black ordering of a grid instead of a
natural ordering).

Algorithms can sometimes be transformed so that their data-flow admits an
efficient out-of-core schedule, but they are not as common as algorithms that are
transformed to introduce parallelism. One obvious reason for this is that parallel al-
gorithms have been investigated much more intensively than out-of-core algorithms.
Another possible reason is that work inefficiency, and to some extent instability,
are often tolerated in parallel algorithms. The common argument goes something
like this: “this parallel algorithm performs 4 times more work than the sequential
algorithm, but if you have 100 processors, it would still 25 be times faster than a
sequential algorithm that uses only one processor.” Although this argument fails if
you have only 4 or 8 processors, it is valid if you have a 100, and some users do have
applications that they must parallelize on large numbers of processors. The same
reasoning cannot be applied to out-of-core algorithms, because the in-core/out-of-
core performance ratio is fixed, not unbounded like the number of processors. For
example, if running an algorithm which cannot reuse in-core data out of core is 10
times slower than running it in core, and if a “transformed” algorithm with im-
proved data reuse performs 4 times more arithmetic, it will solve problems at most
2.5 times faster than the original algorithm. For many users the difference is not
significant enough to switch to an out-of-core algorithm, especially if the out-of-core
algorithm is numerically less stable.

Still, there are interesting examples of algorithms that have been transformed
to improve data reuse, which this section describes.
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3.1. Dense Eigensolvers. The most widely-used dense eigensolvers are based
on the QR algorithm and its variants. In these algorithms, the matrix is first
reduced to either a tridiagonal matrix (in the symmetric case) or to an upper
Hessenberg matrix (in the nonsymmetric case) using symmetric orthogonal trans-
formations. The algorithm then computes the eigenvalues of the reduced matrix
iteratively.

It appears that there is no way to schedule the symmetric reduction with a
significant level of data reuse, although I am not aware of any formal lower bound.
But the algorithm can be replaced by a block algorithm that offers a high level of
data reuse. The transformed algorithm performs more work than the original. It is
not considered to be less stable, since both apply only orthogonal transformations
to the matrix. In the symmetric case, the rest of the algorithm can be performed
in-core, since it operates on a tridiagonal matrix (with Θ(n) nonzeros, as opposed
to the original dense matrix with has Θ(n2) nonzeros). In the nonsymmetric case,
computing the eigenvalues of the Hessenberg matrix involves an iterative algorithm
in which every iteration accesses Θ(n2) words and performs only Θ(n2) work. I am
not aware of an efficient way to implement this algorithm out-of-core.

In general terms, The blocked algorithm for the reduction of a symmetric ma-
trix to a tridiagonal one works as follows. It first reduces the matrix to a block
tridiagonal matrix, rather than to a true tridiagonal matrix. The reduced matrix
can then be reduced to a new block tridiagonal matrix with a smaller block size,
until we get a true tridiagonal matrix. The blocked algorithm performs more work
than the original scalar algorithm.

Grimes and Simon [31] describe such an algorithm for dense symmetric gener-
alized eigenvalue problems, motivated by quantum mechanical bandstructure com-
putations. Their algorithm works by reducing the matrix into a band matrix using
block Householder transformation. They assume that the band matrix fits within
primary memory and reduce it to a tridiagonal matrix using an in-core algorithm.
This variant is more efficient than the general scheme we described above because
their algorithm reduces the original matrix not to a general block tridiagonal ma-
trix, but to a band matrix. They report on the performance of the algorithm on a
Cray X-MP with a solid state storage device (SSD) as secondary storage.

Dubrulle [18] describes an implementation of the symmetric reduction to tridi-
agonal algorithm with a sequential access pattern, but without introducing any
data reuse. This paper is similar in motivation to Moler’s paper [40].

3.2. Iterative Linear Solvers. Early algorithms were all implemented out-
of-core, but advances in iterative linear solvers made out-of-core implementations
increasingly difficult. Early algorithms were relatively easy to schedule out of core.
More advanced techniques that were introduced later, such as conjugate gradient
and multigrid, however, are difficult to schedule out-of-core. The same techniques
can sometimes be applied to conjugate-gradient-like algorithms that compute eigen-
values of sparse matrices.

Many modern iterative methods cannot be scheduled for significant data reuse
because each element of their state vectors in iteration t depends on all the elements
of the state vector in iteration t− 1. In conjugate gradient and similar algorithms,
these dependences occur through a global summation; in multigrid and other mul-
tilevel algorithms, the dependences occur through a traversal of a hierarchical data
structure.
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Three different techniques have been proposed to overcome these problems. The
first technique retains the basic structure of the algorithm, but tries to reduce the
number of iterations by making each iteration more expensive. When each iteration
requires one pass over the out-of-core data structure, this approach reduces I/O.
Mandel [38], for example, describe an out-of-core Krylov-subspace algorithm (i.e.,
conjugate-gradient-like) with a domain-decomposition preconditioner for solving
finite-elements problems. The preconditioner accelerates convergence by making
every iteration computationally more expensive.

The second approach is to algebraically transform algorithms so that they can
be scheduled for data reuse. The effect of these transformations is to delay infor-
mation propagation through the state vector. All of the algorithms in this category
perform more work than the original algorithms, and they are generally less numer-
ically stable. On the other hand, they are equivalent to the original algorithms in
exact arithmetic (so convergence is not a concern, only accuracy) and transformed
algorithms can usually be derived almost mechanically from existing ones.

Leiserson, Rao, and the author [35, 55] introduced the notion of blocking cov-
ers, which they used to design out-of-core multigrid algorithms. These algorithms
have not been implemented. The author also developed transformation techniques
for conjugate gradient and related algorithms [55]. These algorithms have been suc-
cessfully implemented out-of-core. These conjugate-gradient algorithms are closely
related to multistep conjugate-gradient algorithms [9] whose goal is to eliminate
synchronization points (i.e., global summations) in parallel algorithms.

The third technique for removing dependencies from iterative algorithms relies
on the structure of the conjugate gradient algorithm. In the conjugate gradient and
related algorithms, global summations are used to incrementally construct a poly-
nomial that minimizes some error norm, and hence, ensures optimal convergence.
It is also possible to choose the polynomial without computing global sums. The
polynomial that we choose can be either fixed for all linear systems (as in so-called
stationary iterations and in certain polynomial preconditioners), or it can depend
on certain properties of the coefficient matrix (as in Chebychev iteration, which
depends on the extreme eigenvalues of the matrix).

Fischer and Freund proposed such out-of-core methods based on polynomial
preconditioning [24] and on an inner-product free Krylov-subspace method [23].
Both methods perform a small number of conjugate-gradient iterations to approxi-
mate the spectrum of the matrix. This approximation is used to construct a family
of polynomials that is used in a polynomial preconditioner in one method, and in
an inner-product free Krylov-subspace algorithm in another method. Both meth-
ods compute far fewer inner products than popular Krylov-subspace algorithms
and should therefore be easier to implement out-of-core. Generally speaking, these
methods are not as numerically robust as the (hard to schedule) algorithms that
they are supposed to replace.

4. Concluding Remarks

This section discusses a few general issues that pertain to all of the algorithms
described in this paper.

4.1. How Much Main Memory Should Computers Have? The costs
of main memory and disks dictate a certain reasonable range of ratios of disk to
main memory sizes. Disk storage is about 50 times cheaper today than DRAM
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storage.3 Therefore, computers are likely to have main memory sizes that are, say,
10 to 1000 times smaller than their disks. Computers with less memory than this
are poorly designed, since their main memories, and hence their performance, can
be significantly increased at a modest increase in their total cost.

In terms of out-of-core algorithms, and especially in terms of asymptotic data-
reuse bounds, these disk/memory size rations imply that main memories are very
large. For example, using the conservative assumptions that computers have main
memories that are at least 1/1000 the size of their disks, and that the data set size
n is at least 1, 000, 000, we conclude that computers have enough main memory to
hold Θ(

√
n) data items in core. Smaller data sizes can usually be handled in core

today, and smaller memories imply poor design, as explained above.
This analysis implies that in some cases we cannot evaluate algorithms by

comparing asymptotic data-reuse bounds. The asymptotic I/O bound for the FFT,
for example, Θ(n logn/ logM), essentially reduces to Θ(n) since logn/ logM ≤ 2
on any reasonable computer. We cannot use the asymptotic bound to compare the
algorithm to another algorithm that performs asymptotically only Θ(n) I/O’s.

4.2. Analyzing I/O and Data Reuse. Four approaches for analyzing I/O
counts and levels of data reuse have been used in the literature.

The most obvious approach is to simply count read and write operations exactly.
This approach is the most tedious, and it rarely predicts the impact of I/O on the
total execution time accurately. The time it takes to service I/O requests depends
on many factors, including the size of the requests, whether data is prefetched or
fetched on demand, whether the requests access data sequentially, etc. Therefore,
exactly analyzing the number of I/O requests or the total amount of data that is
read and written usually does not produce accurate running-time estimates.

A more relaxed approach is to asymptotically bound the number of I/O’s in the
algorithm. This is easier, of course, than counting I/O’s exactly, especially when
one wishes to prove lower bounds. The usual warnings that apply to any asymptotic
bound are applicable here, with the added caveat that one must assume that main
memories are large, as explained above. This reduces some asymptotic bounds,
such as the ones for FFT and for sorting, to Θ(n).

Another approach, which is applicable only when the algorithm performs re-
peated sequential accesses to the data, is to count the number of times the algorithm
accesses the data sets, commonly referred to as the number of passes. When ap-
plicable, this approach can predict running times very accurately. The approach
can be extended somewhat by considering additional access patterns, such as out-
of-core matrix transposition, as “primitives”. We can then state, for example, that
a certain FFT algorithm performs two passes over the data and one matrix transpo-
sition. In my opinion, such statements are more useful in practice than asymptotic
bounds.

The last approach, which is widely used in the literature on dense-matrix algo-
rithms, analyzes the so-called level-3 fraction in the algorithm. The level-3 fraction
is the fraction of arithmetic operations that can be represented by matrix-matrix
operations, mainly multiplication, factorization, and triangular solves. The ratio-
nale behind this approach is that matrix-matrix operations can be scheduled for a

3The DRAM/disk price ratio fluctuates (it was 100 two years ago, for example), but these
fluctuations are too small to invalidate the argument that we present.
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high level of data reuse, and that thus, an algorithm with a high level-3 fraction is
likely to run well on a computer with caches or as an out-of-core algorithm.

The trouble with this approach is that it predicts what fraction of the work can
be expected to enjoy some level of data reuse, but it does not predict how much
data reuse can be achieved. One can thus find in the literature algorithms with a
high level-3 fraction, but in which the matrix-matrix operations have a constant
level of data reuse, say 2 or 4. These algorithms will clearly be inefficient when
executed out-of-core. On the other hand, the level-3 fraction is a good indicator of
cache performance, since even a modest level of data reuse is sufficient to reduce
cache miss rates significantly on many computers (this is changing as cache miss
penalties are growing).

4.3. Out-of-Core and Other Architecture-Aware Algorithms. Main
memory and disks are just two levels of what is often an elaborate memory hi-
erarchy. The memory systems of today’s workstations and personal computers
consist of a register file, two levels of cache, main memory, and disks. High-end
machines often have three levels of cache, and their main memories and file systems
are distributed. Algorithms that are designed to exploit one level of the memory
system often exploit other levels well. For example, an out-of-core algorithm that is
designed to exploit the speed of main memory when the data is stored on disks can
sometimes be used to exploit caches and even the register file. Similarly, an algo-
rithm that is designed to run well on a distributed-memory parallel computer can
sometimes be efficient as an out-of-core algorithm. In particular, many partitioned
dense-matrix algorithms can effectively exploit all of these architectural features.
But this is not always true. The main memory/disk relationship is different enough
from the cache/main memory relationship that some algorithms that are efficient
out-of-core do not exploit caches efficiently, or vice versa. Algorithms that run well
on a distributed-memory parallel computer do not always translate into efficient
out-of-core algorithms, and vice versa.

At least until recently, the cache/main-memory bandwidth ratio has been much
lower than the main-memory/disk bandwidth ratio. Therefore, algorithms with a
modest level of data reuse exploit caches well, but are inefficient when implemented
out-of-core. Algorithms which trade more work for a high level of data reuse are
often useful out of core, but are inefficient in core, because the gain in cache effec-
tiveness is more than offset by the loss in work efficiency. The cache/main-memory
bandwidth ratio is increasing, so it is possible that in the future there will not
be any difference between cache-aware and out-of-core algorithms. I believe, how-
ever, that it is more likely that new main memory technologies will improve main
memory bandwidth.

Some algorithms have schedules that are efficient on distributed-memory paral-
lel computers but have no efficient out-of-core schedules. The most important group
of algorithms in this class are iterative linear solvers. Many of these algorithms can
exploit a large number of processors and can be scheduled so that the amount of
interprocessor communication is asymptotically smaller than the amount of work.
For example, a conjugate gradient solver for a 2-dimensional problem of size n can
theoretically exploit n/ logn processors in a work-efficient manner, with a compu-
tation/communication ratio of

√
n/p. The high computation/communication ratio

ensures that the algorithm runs efficiently even when interprocessor communication
is significantly slower than the computation speed, which is common.
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As explained in Section 3.2, these algorithms cannot be scheduled for any sig-
nificant level of data reuse. Even though in both computational environments a
processor can compute much faster than it can communicate (with other proces-
sors or with the disk), there is a crucial difference between the two environments.
On the parallel computer, data that is not local is still being updated, but in the
out-of-core environment, data that is not in core is not being updated.

There are also algorithms that can be scheduled for a high level of data reuse
but cannot be scheduled in parallel, but they are not common in practice.

4.4. Abstractions for Scheduling. Discovering and implementing good sched-
ules is difficult. Abstractions help us discover, understand, and implement complex
schedules that allow algorithms to run efficiently out-of-core and in parallel. Many
of the schedules and algorithms that this paper describes can be expressed in terms
of simple abstractions.

Many efficient schedules for dense matrix algorithms can be expressed in terms
of block-matrix algorithms. That is, the schedule is expressed as an algorithm
applied to matrices consisting of submatrices rather than matrices of scalars.

Efficient out-of-core FFT algorithms are expressed in terms of multiple FFTs
on smaller data sets and a structured permutation, namely, matrix transposition.

Schedules for general sparse matrix factorizations are usually expressed (and
generated) using elimination trees, which are essentially compact approximate rep-
resentations of the data-flow graphs of the algorithms. They are compact mostly
because they represent dependences between rows and/or columns, not between
individual nonzeros of the factors. Some elimination trees represent actual depen-
dences, some represent a superset of the dependences.

While these are the most common abstractions one finds in the literature to
describe schedules, there are a few others that deserve mention.

Recursion is a powerful abstraction that has not been used extensively by de-
signers of numerical software, perhaps because of the influence of Fortran (which did
not support procedural recursion until recently). The author designed a recursive
schedule for dense LU factorization with partial pivoting that is more efficient than
schedules based on block algorithms [53]. Gustavson applied the same technique
to several other dense matrix algorithms [32].

Cormen developed an abstraction for describing structured permutations in
terms of matrix operations on indices [10].

Van Loan uses an abstraction based on Kronecker products to describe FFT
algorithms and their schedules [57].
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