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ABSTRACT
In this paper we discuss the important practical problem
of customer wallet estimation, i.e., estimation of potential
spending by customers (rather than their expected spend-
ing). For this purpose we utilize quantile modeling, whose
goal is to estimate a quantile of the discriminative condi-
tional distribution of the response, rather than the mean,
which is the implicit goal of most standard regression ap-
proaches. We argue that a notion of wallet can be captured
through high quantile modeling (e.g, estimating the 90th
percentile), and describe a wallet estimation implementa-
tion within IBM’s Market Alignment Program (MAP). We
also discuss the wide range of domains where high-quantile
modeling can be practically important: estimating oppor-
tunities in sales and marketing domains, defining ’surpris-
ing’ patterns for outlier and fraud detection and more. We
survey some existing approaches for quantile modeling, and
propose adaptations of nearest-neighbor and regression-tree
approaches to quantile modeling. We demonstrate the vari-
ous models’ performance in high quantile estimation in sev-
eral domains, including our motivating problem of estimat-
ing the ’realistic’ IT wallets of IBM customers.
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1. INTRODUCTION
In standard regression modeling, we are given n observations
on a continuous numeric variable Y and a set of p explana-
tory variables, or features, x = (x1, ..., xp)t, and we try to
estimate the ‘dependence’ of Y on x, so that in the future
we can observe x only and predict what Y may be. This
typically leads us to build a model for a conditional central
tendency of Y |x, usually the mean E(Y |x). For example,
under appropriate model assumptions, modeling based on a
least squares loss function (like linear least squares or most
regression tree approaches), is as a maximum likelihood ap-
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proach to estimating this conditional mean.

In this paper we address the situations when we are really
not interested in estimating a conditional mean, but rather
a different property of the conditional distribution P (Y |x),
in particular a high quantile of this distribution, such as
the 0.9 quantile of P (Y |x), which is the function c(x) such
that P (Y ≤ c(x)|x) = 0.0. As we discuss in Section 2
below, these problems (of estimating conditional mean vs.
conditional high quantile) may be equivalent under certain
simplistic assumptions about our models, but in practice
they are usually not. We are typically interested in modeling
high quantiles because they represent a desired ‘prediction’
in some business and scientific domains.

Our primary motivating application is the problem of cus-
tomer wallet estimation, which is of great practical interest
to us at IBM. A customer’s wallet for a specific product
category (for example, Information Technology) is the total
amount this customer can spend in this product category.
As an IT vendor, IBM observes what the companies that
are our customers actually spend with us, but does not typ-
ically have access to the customers’ budget allocation de-
cisions, their spending with competitors, etc. Information
about our customers’ wallet, as an indicator of their poten-
tial for growth, is considered extremely valuable for market-
ing, resource planning and other tasks. For a detailed survey
of the motivation, problem definition, and some alternative
solution approaches, see [18]. In that paper we propose the
definition of a customer’s REALISTIC wallet as the 0.9 or
0.95 quantile of their conditional spending — this can be
interpreted as a highly optimistic (yet still attainable) es-
timate of what they could spend on buying IT from IBM.
This task of modeling ‘what we can hope for’ rather than
‘what we should expect’ turns out to be of great interest in
multiple other business domains, including:

• When modeling sales prices of houses, cars or any other
product, the seller may be very interested in the price
they may aspire to get for their asset if they are suc-
cessful in negotiations. This is clearly different from
the ‘average’ price for this asset and is more in line
with a high quantile of the price distribution of equiv-
alent assets. Similarly, the buyer may be interested in
the symmetric problem of modeling a low quantile.

• In outlier and fraud detection applications we may



have a specific variable (such as total amount spent
on a credit card) whose degree of ‘outlyingness’ we
want to examine for each one of a set of customers or
observations. This degree can often be well approxi-
mated by the quantile of the conditional spending dis-
tribution given the customer’s attributes. For identi-
fying outliers we may just want to compare the actual
spending to an appropriate high quantile, say 0.95.

In this paper, we address quantile estimation both as a
generic problem and in the specific context of customer wal-
let estimation. In Section 2 we discuss the fundamental sta-
tistical and practical issues involved in the task of modeling
high quantiles and evaluating performance of high-quantile
prediction models. We then survey in Section 3 a variety
of approaches that have been proposed in the literature for
quantile modeling, and propose original approaches based on
the adaptation of arguably the two most common regression
approaches used in data mining — k-nearest neighbors and
regression trees — to estimation of high quantiles instead
of conditional means. Section 4 is devoted to a case study,
where we describe the Market Alignment Program (MAP),
aimed at refocusing IBM Sales resources using wallet esti-
mates, and present the modeling and evaluation process we
went through to determine which approach was most ap-
propriate for supplying wallet estimates for MAP. Our main
tool in that effort is wallet values obtained from consultation
with IBM experts, which we use to analyze which of a large
set of candidate models best captures the experts’ notion of
customer wallet. Finally, we conduct and present in Section
5 an extensive experimental study on a number of practi-
cal prediction problems where high quantile prediction is a
well justified prediction task. This includes our motivating
application of customer wallet estimation, as well as several
publicly available datasets.

Our main conclusions are:

• The IBM experts’ notion of customer wallet seems
most consistent with a high-quantile model for the 0.8
quantile. Compared to our previously proposed defini-
tion of REALISTIC wallet as the 0.9 quantile [18], it
seems that the experts (who are IBM sales executives)
are a little more cautious.

• High quantile predictions are meaningfully different
from mean predictions in all the domains we exper-
iment with here.

• Most of the quantile modeling methods we consider
turn out to be useful, in the sense that most of them do
very well on at least one of our experimental domains,
and all of them do consistently better than standard
modeling approaches.

We discuss these conclusions in more detail in Section 6.

2. BUILDING AND EVALUATING QUANTILE
PREDICTION MODELS

In this section we review some of the fundamental statistical
and algorithmic concepts underlying the two main phases of

predictive modeling — model building and model evaluation
and selection — when our goal is ultimately to predict high
quantiles well.

Let us start from the easier question of model evaluation and
model selection: given several models for predicting high
quantiles and an evaluation data set not used for modeling,
how can we estimate their performance and choose among
them? The first, obvious answer, would be to obtain obser-
vations about high quantiles of holdout data (for example,
by asking experts). This is in general a difficult or very ex-
pensive endeavor, and is often simply impossible (because
no experts are available who can estimate this).

A more sound approach to this problem is to find a loss
function which describes well our success in predicting high
quantile and evaluate the performance using this loss func-
tion. Clearly, the most important requirement from a loss
function for evaluation is that the model which always pre-
dicts the conditional quantile correctly will have the best
expected performance. Such a loss function indeed exists
[11]. Define the quantile loss function for the pth quantile
to be:

Lp(y, ŷ) =

�
p · (y − ŷ) if y ≥ ŷ
(1− p) · (ŷ − y) otherwise

(1)

In Figure 1, we plot the quantile loss function for p ∈
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Figure 1: Quantile loss functions for some quantiles.

{0.2, 0.5, 0.8}. With p = 0.5 this is just absolute error loss.
Expected quantile loss is minimized by correctly predicting
the (conditional) pth quantile of the conditional distribu-
tion. That is, if we fix a prediction point x, and define cp(x)
to be the pth quantile of the conditional distribution of Y
given x:

P (Y ≤ cp(x)|x) = p , ∀x
then the loss function is optimized in expectation at every
point by correctly predicting cp(x):

arg min
c

E(Lp(Y, c)|x) = cp(x)

With p = 0.5, the expected absolute loss is minimized by
predicting the median, while when p = 0.9 we are in fact



evaluating a model’s ability to correctly predict the 90th
percentile of the distribution P (Y |x).

Another approach to evaluation is to look at the proportion
of positive and negative residuals on the holdout data. A
perfect prediction model for the 0.9 quantile will predict a
value that is higher than the actual observed holdout re-
sponse 90% of the time, on average. Thus we can examine
whether the actual percentage of the time that the predic-
tions are higher than observed response is indeed close to
that, as a way of ‘evaluating’ high-quantile models. This is
dangerous, of course, because a model which predicts +∞
90% of the time and −∞ the other 10% would be perfect
according to this measure.

On the modeling side, our first observation is that any prop-
erty of the conditional distribution P (Y |x) can be estimated
well if we estimate well the whole distribution. In particular,
if we have a parametric model for P (Y |x) which we believe
is true and which we have enough data to estimate, then it
is often the best policy to apply all our effort towards esti-
mating this model’s parameters well (e.g., using a maximum
likelihood approach), regardless of what property of P (Y |x)
we are ultimately interested in. For example, if we believe
that the distribution of Y |x is homoscedastic gaussian and
E(Y |x) = αtx is linear in x, then a maximum likelihood
approach would call for fitting a linear regression model of
Y on x. Furthermore, this would also trivially imply that
the 0.9 quantile of P (Y |x) is linear in x, and is simply a
fixed offset from the expectation: E(Y |x) + 1.28× σ.

However, parametric and distributional assumptions are usu-
ally over simplifications of realistic modeling problems, es-
pecially those encountered in complex data-mining domains,
and one should either dispose with them completely (and
choose non parametric approaches), or at least treat with
skepticism the notion of high quality estimation of com-
plete conditional distributions. An alternative is to build
the model by minimizing an ‘empirical risk’ over the training
data, which represents well the prediction task. In the case
of quantile modeling, the quantile estimation loss function
Lp (1) certainly qualifies (a similar approach leads Friedman
et al. [7] to advocate the logistic regression loss function for
boosting, for example).

In practice, both of these approaches may have advantages
and disadvantages. An additional consideration is one of
variance, especially when modeling high quantiles — does
the high-quantile loss function allow us to make efficient use
of the data for modeling? See [11] for detailed discussion of
the dependence of variance on quantile for simple quantile
regression.

All of this leads us to adopting the following methodological
guidelines in developing and testing high-quantile estimation
modeling approaches:

1. Where available, we would like to use expert-supplied
‘ground truth’ for evaluation. Thus, in Section 4 we
use the wallet estimates supplied by experts as a noisy
target, and evaluate our model’s success in terms of
its success in predicting numbers that are close to this
target. When such expert input is not available, our

hold-out data evaluation is based primarily on the ap-
propriate high-quantile loss function Lp (1).

2. Following the concept of ‘empirical risk minimization’
we expect that adaptation of existing learning methods
to use the quantile loss function may lead to useful
quantile modeling tools.

3. We believe these approaches should still be compared
to ‘standard’ learning approaches in terms of the high-
quantile performance of the resulting models, and that
general purpose prediction models may still occasion-
ally do better on the high-quantile prediction task than
the models based on use of quantile loss function, due
to the statistical reasons discussed above. In all of our
experiments below, however, we observe that the stan-
dard approaches performance is significantly inferior to
that of quantile estimation models.

3. ADJUSTING MODELING APPROACHES
TO QUANTILE PREDICTION

Over the recent past, the modeling of quantiles has received
increasing attention. The modeling objectives were either
prediction or to gain insights how the statistical dependen-
cies for quantiles differ from expected value models. We
review some of these efforts in 3.1. Two of the best studied
and also practically most common standard regression ap-
proaches in machine learning and data mining are k-nearest
neighbors and regression trees. We discuss in some detail
how these methods can be adjusted to modeling quantiles
in 3.2 and 3.3.

3.1 Existing Approaches
We are aware of a number of such quantile estimation meth-
ods including Linear quantile regression [11], Kernel quan-
tile regression [19], Quanting [12], Quantile regression forests
[14] and polynomial regression trees [6]. Many of these meth-
ods suffer from intractable computational behavior for larger
quantile estimation tasks as in the case of our IBM wallet.
We next discuss the two most relevant approaches to our
work in some detail.

Linear quantile regression
A standard technique for quantile regression that has been
developed and extensively applied in the Econometrics com-
munity is linear quantile regression [11]. Linear quantile re-
gression assumes that the conditional quantile function is a
linear function of the explanatory variables of the form βx
and we estimate the parameters β̂ that minimize the quan-
tile loss function (Equation 1). It can be shown that this
minimization is a linear programming problem and that it
can be efficiently solved using interior point techniques [11].
Implementations of linear quantile regression are available
in standard statistical analysis packages such as R and SAS.
The obvious limitation of linear quantile regression is that
the assumption of a linear relationship between the explana-
tory variables and the conditional quantile function may not
be true. To circumvent this problem, Koenker [11] suggests
using nonlinear spline models of the explanatory variables.

Quanting
Recently, a reduction from quantile regression to classifica-
tion has been proposed [12]. The Quanting reduction trans-



forms a quantile regression problem into a series of classi-
fication problems such that a small average error rate on
the classification problems leads to a provably accurate es-
timate of the conditional quantile. This allows us to apply
any existing classifier learning algorithm to solve quantile
regression problems. The essential idea of quanting is that
each classifier ct attempts to answer the question ‘is the
q-quantile above or below t?’ In the (idealized) scenario
where A is perfect, one would have ct(x) = 1 if and only if
q(x) > t for a q-quantile q(x), hence the algorithm would

output
R q(x)

0
dt = q(x) exactly. The quanting analysis [12]

shows that if the error of A is small on average over t, the
quantile estimate is accurate.

3.2 Quantile k-Nearest Neighbor
The traditional k -nearest neighbor model is defined as

ŷ(x) =
1

k

X
xi∈Nk(x)

yi, (2)

where Nk(x) is the neighborhood of x defined by the k closes
points xi in the training sample for a given distance measure
(e.g., Eucledian). From a statistical perspective we can view
the set yj ∈ Nk(x) as a sample from approximated condi-
tional distribution of P (Y |x). The standard kNN estimator
of ŷ is simply the expected value of this conditional distri-
bution approximated by a local neighborhood. For quan-
tile estimation we are not interested in the expected value
(i.e., an estimate of E(Y |x)) but rather a particular quan-
tile c(x) of the conditional distribution P (Y |x) such that
P (Y ≤ c(x)|x) = q. Accordingly we can estimate ĉ(x) in
a k-nearest neighbor setting as the q’th quantile of the em-
pirical distribution of {yj : xj ∈ Nk(x)}. If we denote that
empirical distribution by:

Ĝx(c) = 1/k
X

xj∈Nk(x)

I{yj ≤ c} (3)

then our kNN estimate of the q’th quantile of P (Y |x) would

be Ĝ−1
x (q).

The interpretation is similarly that the values of Y in the
neighborhood Nk(x) are a sample from the conditional dis-
tribution P (Y |x) and we are empirically estimating its q’th
quantile.

An important practical aspect of this estimate is that, in
contrast to the standard kNN estimates, it imposes a con-
straint on k. While k = 1 produces an unbiased (while high
variance) estimate of the expected value, the choice of k
has to be at least 1/(1 − q) to provide an upper bound for
the estimate of the qth ‘high’ quantile (more generally we
have k ≥ max(1/q, 1/(1 − q))). The issue of how exactly
to estimate the q’th quantile when q/k is not an integer
(and hence the quantile of the empirical distribution falls in
between observed yj values) also has to be addressed. In
our experiments below we simply select the integer closest
to q/k as the index for the estimate, although interpolation
approaches may be considered as well.

The definition of neighborhood is determined based on the
set of variables, the distance function and implicit properties
such as scaling of the variables. The performance of a kNN

model is very much subject to the suitability of the neigh-
borhood definition to provide a good approximation of the
true conditional distribution — this is true for the standard
problem of estimating the conditional mean and no less so
for estimating conditional quantiles.

3.3 Quantile Regression Tree
Tree-induction algorithms are very popular in predictive mod-
eling and are known for their simplicity and efficiency when
dealing with domains with large number of variables and
cases. Regression trees are obtained using a fast divide
and conquer greedy algorithm that recursively partitions the
training data into subsets. Therefore, the definition of the
neighborhood that is used to approximate the conditional
distribution is not predetermined as in the case of the kNN
model but optimized locally by the choice of the subsets.
Work on tree-based regression models traces back to Mor-
gan and Sonquist [15] but the major reference is the book
on classification and regression trees (CART) by Breiman
et al. [5]. We will limit our discussion to this particular al-
gorithm. Additional regression tree implementation include
RETIS [10], CORE [17], M5 [16], RT [20].

A tree-based modeling approach is determined predominantly
by three components:

• the splitting criterion which is used to select the
next split in the recursive partitioning,

• the pruning method that shrinks the overly large
tree to an optimal size after the partitioning has fin-
ished in order to reduce variance,

• the estimation method that determines the predic-
tion within a given leaf.

The most common choice for the splitting criterion is the
least squares error (LSE). While this criterion is consistent
with the objective of finding the conditional expectation, it
can also be interpreted as a measure of the improvement
of the approximation quality of the conditional distribution
estimate. Tree induction searches for local neighborhood
definitions that provide good approximations for the true
conditional distribution P (Y |x). So an alternative inter-
pretation of the LSE splitting criterion is to understand it
as a measure of dependency between Y and an xi variable
by evaluating the decrease of uncertainty (as measured by
variance) through conditioning. In addition, the use of LSE
leads to implementations with high computational efficiency
based on incremental estimates of the errors for all possible
splits.

Pruning is the most common strategy to avoid overfitting
within tree-based models. The objective is to obtain a smaller
sub-tree of the initial overly large tree, excluding those lower
level branches that are unreliable. CART uses Error-Com-
plexity pruning approach which finds a optimal sequence of
pruned trees by sequentially eliminating the subtree (i.e.,
node and all its ancestors) that minimizes the increase in
error weighted by the number of leaves in the eliminated
subtree:

g(t, T ) =
E(t)− E(Tt)

S(Tt)− 1
(4)



where E(Tt) is the error of the subtree Tt containing t and
all its ancestors, and E(t) is the error if it was replaced by a
single leaf, and S(Tt) is the number of leaves in the subtree.
E(.) is measured in terms of the splitting criterion (i.e., for
standard CART it is squared error loss). Given an optimal
pruning sequence, one still needs to determine the optimal
level of pruning and Breiman et al. suggest cross validation
on a holdout set.

Finally CART estimates the prediction for a new case that
falls into leaf node l similarly to the kNN algorithm as the
mean over the set of training responses Dl in the leaf:

ŷl(x) =
1

nl

X
yi∈Dl

yi (5)

where nl is the cardinality of the set Dl of training cases in
the leaf.

Given our objective of quantile estimation, the most obvious
adjustment to CART is to replace the sample mean estimate
in the leaves with the quantile estimate using the empirical
local estimate ĜDl(c) of P (Y |x) as in (3).

A more interesting question is whether the LSE splitting
(and pruning) criterion should to be replaced by a quantile
loss. On one hand, finding splits that minimize the quan-
tile loss on the training sample in the leaves corresponds
directly to our prediction objective. On the other hand,
having the best possible approximation of the conditional
distribution can be expected to result in the best quantile
estimates of the distribution and minimizing the distribu-
tion variance could lead to a better approximation than the
direct optimization of quantile loss, in particular for very
high quantiles. In addition, changing the splitting criterion
to quantile loss causes severe computational problems. The
evaluation of a split now requires the explicit construction
of the two sets of predictions in each leaf, sorting both of
them in order to find the correct quantile and the calculation
of the loss. We will not consider the issue of efficiency any
further, as there is already some related work by Torgo [20]
on efficient implementations of trees that minimize mean
absolute deviation (MAD), i.e., quantile loss for q=0.5. In
our experiments below, we investigate the success of the two
splitting criteria in terms of predictive performance only.

4. WALLET ESTIMATION AT IBM:
THE MAP PROJECT

Our framing of wallet modeling as a quantile estimation task
leads to a well-defined machine learning problem. While we
can assess the relative model performance for different mod-
eling approaches in terms of quantile loss (as we will do in
Section 5), the fundamental question of how well our models
perform as wallet estimators remains open. And in partic-
ular, we have no strong indication about the appropriate
choice of the quantile for the IBM customer wallets. In this
section we describe the Market Alignment Program (MAP),
which demonstrates a major use for wallet estimates within
IBM, and which supplied us with a unique opportunity to
evaluate the success of wallet estimation models in capturing
experts’ notion of IBM customer wallets.

4.1 Market Alignment Program
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Transaction 
Data
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Wallet 
Prediction

Expert 
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wallet

Data
Integration

Web Interface

Sales Teams
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Process

Figure 2: Overview of the MAP Tool

In 2005 IBM started an initiative called the Market Align-
ment Program ([13]) to address the major challenge of align-
ing sales resources with the best revenue-generating oppor-
tunities. The main objective of MAP is to drive the sales
resources allocation process based on field-validated analyt-
ical estimates of future revenue opportunity. While expert
knowledge is crucial to facilitate the sales process, the sole
reliance on expert knowledge may lead to an overly strong
focus on existing and large customers with limited growth
opportunities. In order to facilitate the discussion with sales
experts, initial model-based wallet estimates are used as a
starting point in the assessment of future revenue opportu-
nity. An integral part of the MAP process is the validation
of the analytical estimates via an extensive set of workshops
conducted with sales leaders. These interviews rely on a
web-based tool to convey the relevant information, and to
capture the expert feedback on the analytical models. The
tool allows the sales team to input their estimates of rev-
enue opportunity, as well as their reasons for recommending
a change to the model results. As a side effect of this inter-
view process, we now have at hand “validated” customer-
wallet estimates against which we can evaluate our models.
Figure 2 shows a high-level view of the MAP web-based tool.

The complete MAP process consists of:

1. Developing a consistent data model incorporating all
relevant information for each customer, including his-
torical transactions with IBM, company firmographics
(e.g. annual revenue, number of employees, etc), and
IBM sales coverage information

2. Estimating the wallets for all IBM customers within
each major product group using a simple quantile kNN
wallet model

3. Developing a web-based tool designed to display his-
torical revenue along with the model-estimated rev-
enue opportunities for each IBM sales account (an ac-
count consists of one or more IBM customers), as well
as capture expert feedback on these estimates

4. Conducting workshops with sales leaders to validate
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the model-estimated future revenue opportunities for
each sales account

5. Shifting sales resources to sales accounts with the largest
validated revenue opportunities.

4.2 Analytical Details
For the initial round of workshops conducted in late 2005,
the wallet estimates displayed in the MAP tool were gen-
erated using a simple and intuitive quantile kNN approach
that follows our definition of REALISTIC wallet. For each
of the approximately 100,000 customers available for this
study, we identified a set of 20 similar companies, where
similarity is based on the industry and a measure of size (ei-
ther sales or employees, depending on the availability of the
data). From this set of 20 firms, we discarded all compa-
nies with zero IBM revenue in the particular product group
and reported the median of the IBM revenues of the remain-
ing companies as the wallet estimate for this product group.
The choice of the median (50th percentile) reflected a com-
bination of statistical considerations and ad-hoc business
constraints (such as conforming to a ’known’ total market
opportunity, i.e., sum over all companies). This estimated
wallet was sometimes smaller than the realized 2004 IBM
revenue for some companies. The final reported estimates
were therefore taken as the maximum of the kNN model
estimate and last years revenue (we refer to this operation
as flooring). These wallet predictions were aggregated into
opportunities by sales account according to the IBM inter-
nal account structure. The MAP workshops covered a total
of about 1200 important sales accounts. Figure 3 presents
the expert-validated opportunity for a major IBM software
brand as a function of the calculated opportunity estimates
from the 2005 workshops.

We can make a number of interesting observations here:

1. 45% of the opportunity estimates are accepted with-

out alteration. The majority of the accepted oppor-
tunities are for smaller accounts. This shows a strong
human bias towards accepting the provided numbers,
and emphasizes the value of supplying estimates where
the experts have little knowledge.

2. For 15% of the accounts, the experts concluded that
there was NO opportunity - mostly for competitive
reasons.

3. Of the remaining 40% of accounts, opportunity esti-
mates were decreased (23%) slightly less often than
they were increased (17%).

4. The horizontal lines reflect the human preference to-
wards round numbers.

5. The opportunities and the feedback appear almost jointly
normal in a log plot. This suggests that the opportuni-
ties have an exponential distribution with potentially
large outliers, and that the sales experts corrected the
opportunities in terms of percentage.

4.3 Evaluating Wallet Models
While the purpose of the MAP workshop was not primarily
to validate our models, as a side effect we now have 1200
“true” wallets (based on experts’ opinions) for 2006 at the
sales-account level that we can use to compare and evalu-
ate our different wallet modeling approaches. We decided
to eliminate the 15% of accounts where the experts reduced
the opportunity to zero for competitive reasons. This infor-
mation is not available to the models and we did not want to
bias our evaluation. It may be an interesting classification
problem to identify accounts without opportunity, but we
currently want to focus the quality of our estimates if there
is an opportunity.

It is a well established fact that monetary quantities (like
wallets) typically have a very long tailed exponential-type
distribution. The few largest numbers, corresponding to
biggest IBM customers, would typically dominate model-
ing and evaluation. And homoscedasticity assumptions un-
derlying most modeling and evaluation approaches typically
do not hold for monetary quantities. This is clearly shown
by the experts’ tendency to make wallet adjustments by
percents rather than dollars (corresponding roughly to ho-
moscedasticity on the log scale), as discussed above. On the
other hand, success of models in a business environment is
ultimately measured in dollars, not log-dollars. We therefore
chose to evaluate model performance on three scales: error
on original (dollar) scale, square root scale, and log scale.
In addition to the sum of squared errors for each scale, we
also considered the absolute error. This provides us with a
total of six different performance criteria.

We adopted the modeling approaches discussed in the previ-
ous section, and to account for our lack of knowledge about
what truly defines a customer wallet, we allowed the model
parameters – such as the quantile being modeled, neighbor-
hood size, etc. – to vary. In total, we built nearly 100
different models, counting all variations of model parame-
ters, input variables, and different quantiles. We followed
the same aggregation process and calculated the resulting
opportunities for 2006 at the sales-account level for each



Table 1: Model performance in terms of number of
times a wallet model was within the top 20 models
across the 6 different performance metrics.
Model Brand 1 Brand 2 Brand 3
Shown Q-kNN 6 5 6
Max Revenue 03-05 1 3 4
Linear Q-Regression 6 4 5
Q-kNN 1 0 2
Q-kNN + Flooring 3 6 6
Q-Tree 1 4 4

model. We finally ranked all models according to each of
the 6 performance criteria, and compared how often a given
model appears within the top 20 of all models. Table 1 shows
the relative performance of the best variants and includes as
reference points the performance of the shown Q-kNN model
and of a very naive model that predicts simply for each ac-
ctoun the maximum revenue over the last 3 years.

The results in Table 1 support the following conclusions:

• Q-kNN performs very well after flooring but is typi-
cally inferior prior to flooring;

• 80th percentile seems to be the most appropriate quan-
tile to capture experts’ definition, across multiple ap-
proaches;

• Linear quantile regression performs consistently well
(flooring has a minor effect);

• Models without last years revenue do not perform well.

Based on this analysis for three major product brands, we
concluded that the linear quantile regression model showed
the best overall performance, when using a quantile of 0.8.
In other words, this quantile regression model provided the
best agreement with the expert feedback collected during
the initial 2005 MAP workshops. Hence, this model was
selected to provide the revenue opportunity estimates for
MAP workshops conducted in late 2006. The results from
this iteration are not yet available.

5. EXPERIMENTS IN
QUANTILE MODELING

In the sequel we compare experimentally the performance
of different quantile estimation models that were presented
in Section 3:

• Linear Q-Regression: linear quantile regression ap-
proach from Section 3.1 as developed by Koenker [11].

• Quanting: reduction approach from Section 3.1 to
quantile estimation using ensembles of 100 classifica-
tion trees.

• Q-kNN: quantile k-nearest neighbor algorithm from
Section 3.2 with quantile rather than mean prediction
in the neighborhood for k=50 use the default setting
of the WEKA implementation including rescaling of
the variables.

• Three versions of our quantile regression trees from
Section 3.3 including LSE Q-Tree that uses least
squared error splitting, LSE Q-Tree using quantile
loss splitting, and finally Bagged LSE Q-Tree to
make the results comparable in terms of variance er-
ror [4] to the quanting performance that combines an
ensemble of 100 trees.

In addition we generate quantile estimates from the cor-
responding traditional modeling approaches including lin-
ear regression, kNN, and CART. These models attempt to
model the mean and cannot perform well in high quantile
estimation unless the distribution is highly skewed and the
expected value happens to correspond to a high quantile.
However, if we assume homoscedastic gaussian error model,
then predicting the mean and predicting a high quantile are
equivalent, as discussed in Section 2, and the 0.9th condi-
tional quantile of Y would be just E(Y |x)+1.28σ. We adopt
this approach as a means of converting estimates of condi-
tional means into estimates of 0.9th conditional quantiles
in our experiments. We estimate σ2 from the test set as
E(yi − ŷi)

2.

As baseline, we also present the performance of the optimal
Constant model that predicts for all observations the 90th
percentile of the training set.

We collected in addition to the IBM domain a number of
public datasets with similar motivation:

1. Adult: available from the UCI Machine Learning Repos-
itory [3] as a classification dataset. The data was
originally extracted from the Census Bureau Database
and describes individual demographic characteristics
of such as age, education, sex and occupation. For
the original dataset, the objective is to predict a label
that indicates whether or not the individual’s income
is above $50K. We have retrieved the original numer-
ical income values from the Census Bureau Database
and used the income as the dependent variable in the
quantile regression. Our objective is to predict the
0.9th quantile of the conditional income distribution.
This is an interesting piece of information, because it
reveals what individuals can ‘wish for’ in terms of in-
come, given their demographic characteristics.

2. California Housing: available from the StatLib repos-
itory [1]. It contains data on California housing char-
acteristics aggregated at the block level (an average
block group includes 1425.5 individuals living in a geo-
graphically compact area). The independent variables
are neighborhood characteristics like median income,
housing median age, longitude etc. The dependent
variable is the median house value. Our objective is
to predict the 0.9th quantile of the conditional house
value distribution. This information is very valuable
for house sellers and buyers, since it indicates what
would be an ‘upper bound’ on the house value, given
its characteristics.

3. KDD-Cup 1998: available at the UCI KDD Archive
[2]. This dataset consists of records of individuals who



Table 2: Characteristics of the datasets including
training and test size as well as the number of nu-
meric and nominal variables.
Domain Training Test Numeric Nominal
KDD98 4840 4870 7 3
California 13760 6880 8 0
Adult 32560 16280 6 8
IBM 20000 63000 14 6

have made a donation in the past to a particular char-
ity. Each example consists of attributes describing
each individual’s donation history over a series of do-
nation campaigns, as well as demographic information.
The dependent variable is the individual’s donation
amount in the most recent campaign. The original
dataset contains 95412 training records and 96367 test
records, but only 5% of the individuals donated in the
current campaign. Our objective is to predict the 0.9th
quantile of the conditional donation amount for indi-
viduals who donate. For this reason, we only use 4843
donor examples in the training set and the 4876 donor
examples in the test set. Predicting a high quantile
of the conditional donation distribution is important
for ‘anchoring’, i.e., deciding how much to suggest as
a possible donation value when soliciting donations.
Anchoring is a well-established concept in marketing
(e.g., [8, 9, 21]).

4. IBM Wallet: a subset of the data discussed in Sec-
tion 4. It contains the purchase history and some fir-
mographic characteristics (such as industry and num-
ber of employees) of companies that are IBM cus-
tomers. The dependent variable is the amount that
the company has spent with IBM in the most recent
year. By modeling the 0.9th quantile of the conditional
spend, we get an estimate of the REALISTIC wallet
of the customer, as defined in [18]. We use both the
original monetary values and also a log-transformed
version, in which all numeric features are transformed
to the log-scale, as discussed in Section 4.

The main domain characteristics including size of training
and test sets and the number of numeric and nominal vari-
ables are shown in Table 2.

Since all of our datasets are reasonably large, we used the
same training-test split for all modeling approaches accord-
ing to the sizes in Table 2. The results in Table 3 report the
average quantile loss on the test sample with the standard
deviation of this average (estimated as the standard devia-
tion of the quantile loss divided by the root of the number
of test cases) in parentheses. Given the large size of all test
sets and the central limit theorem we can argue that the av-
erage quantile loss is approximately gaussian and we can use
the deviation to assess the uncertainty in these evaluation
scores. The bold indication of the best models is based on
pairwise t tests to the method with the best results. Any
method that was not significantly worse than the best one
is in bold.

Looking at Table 3, we can draw several interesting conclu-
sions:

1. On these datasets, the quantile modeling approaches
dominate the ‘standard’ modeling approaches. In fact,
all standard methods perform worse than all quantile
approaches on all datasets.

2. Not surprisingly, there is no clear winner among the
quantile approaches. Surprisingly, however, one method
(Linear Quantile Regression) is significantly better than
all other quantile approaches on two datasets, and sig-
nificantly worse than the best method on the other
three! The special property of KDD98 and IBM which
makes Linear Quantile Regressions successful is likely
the presence of an independent variable which is highly
linearly correlated to the response (last year’s dona-
tion, and last year’s IBM Sales, respectively). The
linear regression successfully takes advantage of this
correlation, while the other methods evidently make
less efficient use of it.

3. The IBM dataset suffers from the highest evaluation
noise by far (as reflected in the ratio of expected error
to its standard deviation). This is another piece of evi-
dence of the difficulty in evaluating customer spending
on the original (Dollar) scale — evaluation is domi-
nated by a few big customers and is not stable even
with the huge test set we have.

4. The particularly bad performance of all standard mod-
els, where the predictions have been created by adding
1.28 times the error standard deviation, is probably
caused by the extreme skew of the distribution of the
response. This causes a similar skew in the distribu-
tion of the error and violates strongly the normality as-
sumption underlying the justification to add 1.28 times
the standard deviation. These models do no better at
quantile estimation without this addition, though.

5. The two tree-based quantile models (LSE and QL Q-
Tree) often produce remarkably similar results. In par-
ticular, using the ‘wrong’ but computationally efficient
criterion (LSE) for splitting and pruning has no detri-
mental effect on the performance in terms of quantile
loss. This supports our view that the role of splitting
criteria is mostly to find a good approximation of the
local density.

6. Both tree-based ensemble methods, Bagged LSE and
quanting, perform similarly on all problems, and in
fact do not have a significant difference in performance
on any of them.

As discussed in Section 2, we can also evaluate our success
in predicting a high quantile also by the percentage of test
cases where the model predictions are higher than actual
observations.

Table 4 shows the percentage of time that each model pre-
dicts a higher value than the observed response on the test
set. As we can see, all numbers are between 82% and 91%,
and they have a slight tendency for negative bias (i.e., pre-
dicting above the response slightly less than 90% of the
time). Linear Quantile Regression clearly does the best job
in this criterion. We hypothesize that this is due to its be-
ing the simplest method, which is least prone to overfitting,
hence is most consistent in terms of test-set performance.



Table 3: Model performance in terms of quantile loss on test set with standard deviation of the estimate of
the mean loss in parentheses.

Approach KDD98 California Adult IBM Log-IBM
Constant 2.51 (0.144) 25217 (259) 5976 (34.9) 412810 (86793) 0.543 (0.0047)
Linear Regression 1.95 (0.064) 14543 (250) 3564 (32.6) 555360 (21701) 0.363 (0.0035)
CART 1.86 (0.0831) 12774 (235) 3348 (36.1) 881310 (36826) 0.372 (0.0035)
kNN 2.22 (0.118) 14036 (258) 37144 (36.8) 1751200 (73683) 0.361 (0.0032)
Linear Q-Regression 1.223 (0.061) 13901 (245) 3332 (30.7) 66049 (13720) 0.279 (0.0036)
Quanting 1.383 (0.094) 9797 (204) 2837 (32.4) 108370 (46663) 0.251 (0.0036)
Q-kNN 1.630 (0.115) 12532 (235) 3232 (35.5) 244910 (67661) 0.279 (0.0039)
LSE Q-Tree 1.321 (0.086) 11695 (254) 2915 (34.7) 92831 (29411) 0.259 (0.0039)
QL Q-Tree 1.325 (0.087) 11681 (231) 2979 (33.8) 94920 (29636) 0.257 (0.0036)
Bagged LSE Q-Tree 1.319 (0.092) 9989 (217) 2830 (30.1) 91032 (28353) 0.254 (0.0036)

Table 4: Model performance in terms of the percent of observation above the prediction for the 90th quantile
where the optimal performance would be 0.9.

Approach KDD98 California Adult IBM Log-IBM
Linear Q-Regression 0.9054 0.9010 0.8960 0.9027 0.9003
Q-kNN 0.8521 0.8833 0.8678 0.8548 0.8593
LSE Q-Tree 0.8286 0.8562 0.8736 0.8997 0.8676
Quanting 0.8830 0.8936 0.8692 0.8627 0.9063

Given our motivation for high-quantile estimation, as a way
of estimating ‘what can be hoped for’, it is interesting to
consider the difference between expected predictions of the
standard methods and those of the quantile modeling ap-
proaches. For example, on the Adult dataset, this can tell
us how much higher the salary request would be of a person
using a quantile model to assess her prospects compared to
someone using a standard approach and trying to estimate
their expected salary. We would have liked to analyze these
differences on our motivating problem of IBM wallet, but
due to the extreme instability of these predictions, do not
really trust them. On the Log-IBM dataset, interpretability
is an issue. Thus, we chose to analyze the Adult dataset
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Figure 4: Histogram of differences in prediction be-
tween CART and Bagged LSE on Adult test set.

in more detail. We display in Figure 4 a histogram of the
difference in predictions between the CART model (without
the adjustment to prediction quantiles we discussed above)
and Bagged LSE model on this dataset . As expected, prac-

tically all differences are non-negative. The mean difference
is $18643 and the median $16715, representing the differ-
ences in salary expectations between the humble and the
ambitious.

The corresponding dollar mean differences in prediction for
KDD98, California and IBM are $6.24, $63757, $612380, re-
spectively. This dramatically demonstrates the difference
between predicting the mean and predicting the 90th quan-
tile on these problems.

6. CONCLUSIONS
In this paper we have argued for the practical importance of
high-quantile modeling in many problem domains, includ-
ing wallet estimation, price/salary prediction and others.
We reviewed the statistical considerations involved in de-
signing methods for high-quantile estimation and described
some existing quantile modeling methods, as well as our own
adaptations of kNN and CART to quantile modeling.

Next, we described the MAP application and utilized the
output from its first iteration to analyze which of a large
candidate set of models is most consistent with IBM Sales
executives’ notion of wallet. One interesting conclusion from
our analysis is that the experts relied quite heavily on the
numbers we presented to them (which were the output of
a simplistic ‘first approximation’ model). The second con-
clusion is that the experts’ notion of customer wallet seems
most consistent with a high-quantile model for the 0.8 quan-
tile, compared to our previously proposed definition of the
0.9 quantile [18]. The model which performed best overall
was a linear quantile regression model which (naturally) re-
lies heavily on the previous-year observed sales revenue to
predict current-year wallet.

We then performed an empirical study on several problems
where high-quantile modeling is a well motivated goal. Our
main conclusions are:



• The difference between predicting a conditional mean
and predicting a conditional high quantile does indeed
seem to be very significant from a practical perspec-
tive. As Figure 4 and the average prediction differences
quoted there demonstrate.

• Quantile modeling approaches do indeed perform sig-
nificantly better for high-quantile estimation than mean-
modeling approaches, adapted to high-quantile estima-
tion by a gaussian-based correction. This is not sur-
prising given all we know about data mining domains,
in particular the inappropriateness of gaussianity and
homoscedasticity assumptions in these domains.

• The splitting criterion in tree induction methods is
only indirectly related to the modeling objective. Us-
ing quantile loss rather than the standard least squares
criterion to optimize splitting and pruning has little
effect on the performance of quantile prediction. The
critical modification for quantile estimation seems to
be using the empirical quantile, rather than the em-
pirical mean, for prediction in the leaves.

• Different quantile modeling approaches perform well
for different datasets. In particular, the linear quantile
regression approach seemed to have a unique behavior
on our datasets — it was sometimes significantly the
best, sometimes the worst by far.

In summary, there is a set of algorithms readily available to
address the relevant issue of quantile modeling. The nec-
essary adjustments to classical machine learning techniques
such as tree induction are straight forward and result in re-
liable, interpretable, and efficient solutions.
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