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Abstract

We consider the generic regularized optimization problem β̂(λ) =
arg minβ L(y, Xβ) + λJ(β). Recently, Efron et al. (2004) have shown
that for the Lasso – that is, if L is squared error loss and J(β) = ‖β‖1

is the l1 norm of β – the optimal coefficient path is piecewise linear, i.e.,
∂β̂(λ)/∂λ is piecewise constant. We derive a general characterization of
the properties of (loss L, penalty J) pairs which give piecewise linear co-
efficient paths. Such pairs allow for efficient generation of the full regular-
ized coefficient paths. We investigate the nature of efficient path following
algorithms which arise. We use our results to suggest robust versions of
the Lasso for regression and classification, and to develop new, efficient
algorithms for existing problems in the literature, including Mammen &
van de Geer’s Locally Adaptive Regression Splines.

1 Introduction

Regularization is an essential component in modern data analysis, in particular
when the number of predictors is large, possibly larger than the number of
observations, and non-regularized fitting is guaranteed to give badly over-fitted
and useless models.

In this paper we consider the generic regularized optimization problem. The
inputs we have are:

• A training data sample X = (x1, ...,xn)T, y = (y1, ..., yn)T, xi ∈ R
p and

yi ∈ R for regression, yi ∈ {±1} for 2-class classification.

• A convex non-negative loss functional L : R
n × R

n → R

• A convex non-negative penalty functional J : R
p → R, with J(0) = 0. We

will almost exclusively use J(β) = ‖β‖q in this paper, i.e., penalizing the
lq norm of the coefficient vector.

We want to find:
β̂(λ) = arg min

β∈Rp
L(y,Xβ) + λJ(β) (1)
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where λ ≥ 0 is the regularization parameter: λ = 0 corresponds to no regular-
ization (hence β̂(0) = arg minβ L(y,Xβ)), while limλ→∞β̂(λ) = 0. In choosing
a value for the regularization parameter, we can take a Bayesian approach, and
consider the penalty as a log-prior on model space, with λ corresponding to its
strength parameter (e.g., variance in the case of the l2, or Ridge, penalty). A
more general approach is to solve (1) for a representative set of λ values and
choose among these models, using model selection techniques like cross valida-
tion or generalized cross validation.

Many of the commonly used methods for data mining, machine learning
and statistical modeling can be described as exact or approximate regularized
optimization approaches. The obvious examples from the statistics literature
are explicit regularized linear regression approaches, such as ridge regression and
the Lasso. Both of these use squared error loss, but they differ in the penalty
they impose on the coefficient vector β describing the fitted model:

Ridge: β̂(λ) = min
β

n
∑

i=1

(yi − xT

iβ)2 + λ‖β‖2
2, (2)

Lasso [16]: β̂(λ) = min
β

n
∑

i=1

(yi − xT

iβ)2 + λ‖β‖1. (3)

Another example from the statistics literature is the penalized logistic regression
model [20] for classification, which is widely used in medical decisions and credit
scoring:

β̂(λ) = min
β

n
∑

i=1

log(1 + e−yix
T

i β) + λ‖β‖2
2,

where the loss is the negative binomial log-likelihood. Many “modern” methods
for machine learning and signal processing can also be cast in the framework of
regularized optimization. For example, the regularized support vector machine
[19] uses the hinge loss function and the l2-norm penalty1:

β̂(λ) = min
β

∑

i=1

(1 − yix
T

iβ)+ + λ‖β‖2
2,

where (·)+ is the positive part of the argument. Boosting [4] is another popular
and highly successful method for iteratively building an additive model from a
dictionary of “weak learners”. In [14] we show that the AdaBoost algorithm
approximately follows the path of the l1-regularized solutions to the exponential
loss function e−yf as the regularizing parameter λ decreases.

In this paper, we concentrate our attention on (loss L, penalty J) pairings

where the optimal path β̂(λ) is piecewise linear as a function of λ, i.e., ∃λ0 =

0 < λ1 < . . . < λm = ∞ and γ0, γ1, . . . , γm−1 ∈ R
p such that β̂(λ) = β̂(λk) +

(λ−λk)γk for λk ≤ λ ≤ λk+1. Such models are attractive because they allow us

1This representation differs from the “standard” optimization representation of the regu-
larized SVM, however it is mathematically equivalent to it.
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to generate the whole regularized path β̂(λ), 0 ≤ λ ≤ ∞ simply by sequentially
calculating the “step sizes” between each two consecutive λ values and the
“directions” γ1, . . . , γm−1. Our discussion will concentrate on (L, J) pairs which
allow efficient generation of the whole path and give statistically useful modeling
tools.

A canonical example is the Lasso (3) : Recently [3] have shown that the
piecewise linear coefficient paths property holds for the Lasso, and suggested
the LAR-Lasso algorithm which takes advantage of it. Similar algorithms were
suggested for the Lasso in [11, 13] and for total-variation penalized squared
error loss in [10]. We have extended some path-following ideas to versions of
the regularized support vector machine [22, 7]. The results in [3] show that the
number of linear pieces in the Lasso path is approximately the number of the
variables in X, and the complexity of generating the whole solution path, for
all values of λ, using the LAR-Lasso algorithm, is approximately equal to one
least square calculation on the full sample.

A simple example to illustrate the piecewise linear property can be seen
in Figure 1, where we show the Lasso optimal solution paths for a 4-variable
synthetic dataset. The plot shows the optimal Lasso solutions β̂(λ). To follow

the tradition of the original Lasso paper [16], we plot β̂(λ) as a function of

‖β̂(λ)‖1, rather than the regularization parameter λ 2. Each line represents one
coefficient and gives its values at the optimal solution for the range of λ values.
We observe that between every two “+” signs the lines are straight, i.e., the
coefficient paths are piecewise linear, as a function of λ, and the 1-dimensional
curve β̂(λ) is piecewise linear in R

4.
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Figure 1: Piecewise linear solution paths for the Lasso on a simple 4-variable example

2It is easy to show that there is a one to one correspondence between λ and ‖β̂(λ)‖1 and

if β̂(λ) is piecewise linear in λ, then it is also piecewise linear in ‖β̂(λ)‖1; the opposite is not
necessarily true.
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In this paper, we systematically investigate the usefulness of piecewise lin-
ear solution paths. We aim to combine efficient computational methods based
on piecewise linear paths and statistical considerations in suggesting new algo-
rithms for existing regularized problems and in defining new regularized prob-
lems. We tackle three main questions:

1. What are the “families” of regularized problems that have the piecewise
linear property? The general answer to this question is that the loss L
has to be a piecewise quadratic function and the penalty J has to be a
piecewise linear function. We give some details and survey the resulting
“piecewise linear toolbox” in Section 2.

2. For what members of these families can we design efficient algorithms,
either in the spirit of the LAR-Lasso algorithm, or using different ap-
proaches? Our main focus in this paper is on direct extensions of LAR-
Lasso to “almost-quadratic” loss functions (Section 3) and to non-parametric
regression (Section 4). We also discuss some non-LAR type algorithms in
Section 5.

3. Out of the regularized problems we can thus solve efficiently, which ones
are of statistical interest? This can be due to two distinct reasons:

(a) Regularized problems that are widely studied and used are obviously
of interest, if we can offer new, efficient algorithms for solving them.
In this paper we discuss in this context locally adaptive regression
splines [10] (Section 4.1), support vector machines (Section 5.1) and
others.

(b) Our efficient algorithms allow us to pose — and solve efficiently —
statistically motivated regularized problems that have not been con-
sidered in the literature. In this context, we concentrate on robust
versions of the lasso for regression and classification (Section 3).

1.1 Illustrative example

Before we delve into the technical details, let us consider an artificial, but re-
alistic, example, to illustrate the importance of all three components of the
regularized optimization problem for building good prediction models:

• An appropriate loss function that either matches data error distribution
or is robust enough to account for lack of knowledge of this distribution.

• An appropriate regularization scheme.

• Selection of an appropriate value for the regularization parameter.

Our example has n = 100 observations and p = 80 predictors. All xij are
i.i.d N(0, 1) and the true model is:

yi = 10 · xi1 + εi

εi
iid
∼ 0.9 · N(0, 1) + 0.1 · N(0, 100)
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So the true model only depends on the first predictor, and the normality of
residuals, implicitly assumed by using squared error loss, is violated. On the
loss side, this encourages us to use a robust loss function. As we explain in
Section 2.3, sparsity implies the l1 penalty may be appropriate.

We thus consider two regularized coefficient paths:

• For the l1-penalized “Huber’s loss” with knot at 1:

β̂(λ) = arg min
β

∑

|yi−βT
xi|≤1

(yi − βTxi)
2 +

+
∑

|yi−βT
xi|>1

2(|yi − βTxi| − 0.5) + λ
∑

j

|βj | (4)

• For the Lasso (3).

−3 −2 −1 0 1 2 3

0
2

4
6

8

Squared
Huber

y − βTx

L
o
s
s

Figure 2: Squared error loss and Huber’s loss with knot at 1.

Figure 2 shows the squared error loss and Huber’s loss and Figure 3 shows
the two regularized paths β̂(λ) as a function of ‖β̂‖1. The “true” coefficient β̂1 is
the solid line, all other coefficient paths are dashed lines. For the “Huberized”
loss (on the left) we observe that β̂1 is the only non-zero coefficient until it
approaches its true value of 10. At this point the regularized model is the
correct model. Only then do any of the other coefficients become non-zero, and
as ‖β̂‖1 increases (or equivalently as the regularization parameter λ decreases)
the model becomes less and less adequate. The Lasso (on the right) does not do
as well — the lack of robustness of the loss function (i.e., the implicit normality
assumption of squared error loss) causes the regularized path to miss the true
model badly at all λ values.

Figure 4 shows the reducible “future” squared loss as a function of ‖β̂‖1 for
the Huberized-Lasso and Lasso coefficient paths we got. The reducible “future”
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Figure 3: Coefficient paths for Huberized Lasso (left) and Lasso (right) for simulated
data example. β̂1(λ) is the unbroken line, and the true model is Ey = 10x1

squared loss is defined as EX‖Xβ̂ − 10X1‖
2
2. Note that the expectation is

taken only with respect to “future” X and β̂ is fixed. The plot re-iterates
our observation that the Huberized version practically hits 0 reducible loss at
‖β̂‖1 = 10, and the model then degrades significantly as ‖β̂‖1 increases, while
the Lasso does not do particularly well at any point in the regularized path in
terms of reducible loss.
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Figure 4: Reducible error for the models along the regularized paths
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2 The piecewise linear toolbox

In this section, we first develop a general criterion for piecewise linear solution
paths in the case that the loss and penalty are both twice differentiable. We
then use it as an intuitive guide to identify families of regularized problems
where we can expect piecewise linearity.

2.1 Sufficient condition under twice differentiability

For the coefficient paths to be piecewise linear, we require that ∂β̂(λ)
∂λ

is piecewise
constant as a function of λ, or in other words that over ranges of λ values:

lim
ε→0

β̂(λ + ε) − β̂(λ)

ε
= constant vector (5)

To get a condition, let us start by considering only β̂ values where L, J are both
twice differentiable, with bounded second derivatives in the relevant region.
Throughout this section we are going to use the notation L(β̂) in the obvious
way, i.e., we make the dependence on the data X, y implicit, since we are dealing
with optimization problems in the coefficients β only, and assuming the data is
fixed.

We can now write the normal equations for (1) at λ and λ + ε:

∇L(β̂(λ)) + λ∇J(β̂(λ)) = 0 (6)

∇L(β̂(λ + ε)) + (λ + ε)∇J(β̂(λ + ε)) = 0 (7)

Developing (7) in Taylor series around β̂(λ) we get:

∇L(β̂(λ)) + ∇2L(β̂(λ))[β̂(λ + ε) − β̂(λ)] +

+λ∇J(β̂(λ)) + λ∇2J(β̂(λ))[β̂(λ + ε) − β̂(λ)] +

+ε∇J(β̂(λ)) + O(ε2) = 0 (8)

From (6) and (8) we easily get:

β̂(λ + ε) − β̂(λ)

ε
= −

[

∇2L
(

β̂(λ)
)

+ λ∇2J
(

β̂(λ)
)]−1

∇J
(

β̂(λ)
)

+ O(ε) (9)

And from (5) and (9) we get that:

Lemma 1 For twice differentiable loss and penalty, a sufficient and necessary
condition for piecewise linear coefficient paths is that the direction

−
[

∇2L
(

β̂(λ)
)

+ λ∇2J
(

β̂(λ)
)]−1

∇J
(

β̂(λ)
)

(10)

is a piecewise constant vector in R
p as a function of λ.
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When we move to the more realistic domain of non-twice-differentiable loss
and penalty functions, the sufficient conditions which Lemma 1 implies (but
does not prove) are required to get piecewise linear coefficient paths are:

• L is piecewise quadratic as a function of β along the optimal path β̂(λ),
when X, y are assumed constant at their sample values.

• J is piecewise linear as a function of β along this path.

We devote the rest of this paper to examining some families of regularized
problems which comply with these conditions, asserting the piecewise linearity
of their regularized paths and designing efficient algorithms for tracking these
paths.

2.2 Relevant loss functions

Thus, we can consider loss functions L which are:

• Pure quadratic loss functions, like that of the linear regression.

• A mixture of quadratic and linear pieces, like Huber’s loss (4). These
loss functions are of interest because they generate robust modeling tools.
They will be the focus of section 3

• Loss functions which are piecewise linear. These include several widely
used loss functions, like the hinge loss of support vector machines:

L(y,Xβ) =
∑

i

(1 − yiβ
Txi)+

where (u)+ = max(u, 0), and the loss used in quantile regression [9]:

L(y,Xβ) =
∑

i

ci , where ci =

{

τ · (yi − βTxi) if yi − βTxi ≥ 0
(1 − τ) · (βTxi − yi) if yi − βTxi < 0

As we will see later, both Huber’s-type loss functions and l1-type loss functions
do indeed lead to piecewise linear regularized solution paths when l1 regular-
ization is used. Both also offer similar robustness properties, in that they are
linear for large residuals. However the algorithms they yield for following the
solution paths differ significantly. The algorithm for differentiable, Huber’s-type
loss functions is a generalization of the LAR-Lasso algorithm of [3]. The algo-
rithms for non-differentiable loss functions are fundamentally different and we
discuss them in Section 5.1.

2.3 l1 regularization: efficient and effective

On the penalty side, our results lead us to consider the l1 and l∞ penalties as
building blocks for piecewise linear solution paths. We are not aware of any
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use of the l∞ penalty in statistical data modeling. Thus we limit the discussion
in this paper to the l1 penalty and its variants (like total variation penalties
discussed in Section 4).

There are several motivations for using l1 regularization. One is computa-
tional, since the resulting problems have piecewise linear solution paths. How-
ever there are also important statistical reasons why l1 regularization should be
considered, and why it is often preferable to commonly used l2 regularization.

Using l1 regularization results in “sparse” solutions with a relatively small
fraction of non-zero coefficients, as opposed to l2 regularization which forces all
non-zero coefficients [16]. In particular, if the number of predictors is larger than
the number of observations (p > n), then for any λ, there exists an l1-regularized
solution with at most n non-zero coefficients [14].

Thus, in situations where the number of relevant variables is small and there
are a lot of irrelevant “noise” variables, l1 regularization may prove much su-
perior to l2 regularization from a prediction error perspective. Indeed, a sense
can be defined in which l1 regularized problems have lower complexity than l2
regularized ones in high dimension [5, 12]. From an inference/interpretation
perspective, l1 regularization gives “smooth” variable selection and more com-
pact models than l2 regularization [3]. In the case of orthogonal wavelet bases,
the soft thresholding method proposed by [2], which is equivalent to l1 regu-
larization, is asymptotically nearly optimal (in a minimax sense) over a wide
variety of loss functions and estimated functions.

It is not surprising, therefore, that l1 regularization and its variants have
been widely and successfully used in different fields, including engineering and
signal processing (as basis pursuit and wavelet thresholding), machine learning
(as boosting and l1 SVM) and, obviously, statistics, where l1 and total variation
penalties are prevalent.

3 Robust Lasso for regression and classification

In this section, we first define a family of “almost quadratic” loss functions
whose l1-penalized versions generate piecewise linear solution paths. We formu-
late and prove an algorithm, which is an extension of the LAR-Lasso algorithm,
that generates the l1-regularized solution paths for all members of this family.
We then concentrate on two members of this family — Huberized Lasso for
regression and l1-penalized Huberized squared hinge loss for classification —
which define new, robust, efficient and adaptable modeling tools. An R imple-
mentation of these tools is available from the second author’s home-page:
www.stat.lsa.umich.edu/~jizhu/huberized

3.1 “Almost quadratic” loss functions with l1 penalty

We fix the penalty to be the l1(Lasso) penalty:

J(β) = ‖β‖1 =
∑

j

|βj |, (11)
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and the loss is required to be differentiable and piecewise quadratic in a fixed
function of the sample response and the “prediction” βTx:

L(y,Xβ) =
∑

i l(yi, β
Txi) (12)

l(y, βTx) = a(r)r2 + b(r)r + c(r) (13)

where r = r(y, βTx) = (y−βTx) is the residual for regression and r = r(y, βTx) =
(yβTx) is the margin for classification; and a(·), b(·), c(·) are piecewise constant
functions, with a finite (usually small) number of pieces, defined so as to make
the function l differentiable everywhere.

Some examples from this family are:

• The Lasso: l(y, βTx) = (y − βTx)2, i.e., a ≡ 1, b ≡ 0, c ≡ 0.

• Huber’s loss function with fixed knot t (define r = y − βTx the residual):

l(r) =

{

r2 if |r| ≤ t
2t|r| − t2 otherwise

(14)

• Squared hinge loss for classification (define r = yβTx the margin):

l(r) =

{

(r − 1)2 if r ≤ 1
0 otherwise

(15)

as well as its Huberized counterpart described below. Note that the hinge
loss of the support vector machine [19] does not belong to this family as
it is not differentiable at r = 1.

Theorem 2 All regularized problems of the form (1) using (11)—(13) (with r
being either the residual or the margin) generate piecewise linear optimal coef-

ficient paths β̂(λ) as the regularization parameter λ varies.

Proof Since we do not assume twice-differentiability of either the loss or the
penalty (but we do assume differentiability of the loss), we use lemma 1 as
an intuitive argument only, and prove the theorem formally using the Karush-
Kuhn-Tucker (KKT) formulation of the optimization problem implied.

We will code βj = β+
j − β−

j , with β+
j ≥ 0, β−

j ≥ 0, and write the regularized
optimization problem:

minβ+,β−

∑

i

l(yi, (β
+ − β−)Txi) + λ

∑

j

(β+
j + β−

j )

s.t. β+
j ≥ 0, β−

j ≥ 0, ∀j

Then the Lagrange dual function of our minimization problem is:

∑

i

l(yi, (β
+ − β−)Txi) + λ

∑

j

(β+
j + β−

j ) −
∑

j

λ+
j β+

j −
∑

j

λ−
j β−

j
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And the corresponding KKT optimality conditions:

(∇L(β))j + λ − λ+
j = 0

−(∇L(β))j + λ − λ−
j = 0

λ+
j β+

j = 0

λ−
j β−

j = 0

Using these we can figure that at the optimal solution for fixed λ the following
scenarios could hold:

λ = 0 ⇒ (∇L(β))j = 0 ∀j (unconstrained solution)

β+
j > 0, λ > 0 ⇒ λ+

j = 0 ⇒ (∇L(β))j = −λ < 0 ⇒

⇒ λ−
j > 0 ⇒ β−

j = 0

β−
j > 0, λ > 0 ⇒ λ−

j = 0 ⇒ (∇L(β))j = λ > 0 ⇒

⇒ λ+
j > 0 ⇒ β+

j = 0

|(∇L(β))j | > λ ⇒ contradiction

Based on these possible scenarios we can see that:

• Variables can have non-zero coefficients at β̂(λ) only if their “generalized

absolute correlation” |∇L(β̂(λ))j | is equal to λ. Thus, for every value of λ

we have a set of “active” variables A = {j ∈ {1, ...,m} : β̂j(λ) 6= 0} such
that:

j ∈ A ⇒ |∇L(β̂(λ))j | = λ, sgn(∇L(β̂(λ))j) = −sgn(β̂(λ)j)

j /∈ A ⇒ |∇L(β̂(λ))j | ≤ λ

• The direction in which β̂(λ) is moving ∂β̂(λ)
∂λ

when λ changes should be such

that it maintains the conditions |∇L(β̂(λ))A| = λ, |∇L(β̂(λ))AC | ≤ λ.

So, if we know what the “active” set A is we can use a similar argument to
the one we used for proving lemma 1 in (6)—(10) to argue that, as long as we
are in a region where the loss and penalty are both right differentiable, we will
have

∂β̂(λ)A
∂λ

= −(∇2L(β̂(λ))A)−1sgn(β̂(λ)A) (16)

which is just a version of (10), limited to only the active variables and substi-
tuting the l1 penalty for J .

For the family of almost quadratic loss functions we can derive ∇2L(β̂(λ))A
explicitly, since the second derivative of the constant and linear parts in (13) is
0. Thus we easily see:

∇2L(β̂(λ))A =
∑

i

a(r(yi, β̂(λ)T

AxAi))xAix
T

Ai.
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Since a(·) is a piecewise constant function, then ∇2L(β̂(λ))A and ∂β̂(λ)A/∂λ

are also piecewise constant; therefore, the solution path β̂(λ) is piecewise linear.
When one of the following events occur, twice differentiability is violated

and hence the direction in (16) will change:

• A new variable should join A, i.e., we reach a point where |∇L(β̂(λ))AC | ≤

λ would cease to hold if β̂(λ) keeps moving in the same direction.

• A coefficient in A hits 0. This is possible, just as in the Lasso [3]. In that
case, we reach a non-differentiability point in the penalty and we can see
that sgn(∇L(β̂(λ))A) = −sgn(βA) would cease to hold if we continue in
the same direction. Thus we need to drop the coefficient hitting 0 from
A.

• A “generalized residual” r(yi, β̂(λ)Txi) hits a non-twice differentiability
point (a “knot”) in L, for example the “Huberizing” point t in (14), or
the hinge point 1 in (15).

And so we conclude that the path β̂(λ) will be piecewise linear, with the
direction given by (16) and direction changes occurring whenever one of the
three events above happens. When it happens, we need to update A to get a
legal scenario and re-calculate the direction using (16).

Based on this theorem and the arguments in its proof we can derive a generic
algorithm to generate coefficient paths for all members of the “almost quadratic”
family of loss functions with l1 penalty. The LAR-Lasso algorithm [3] is a
simplified version of this algorithm since “knot crossing” events do not occur in
the Lasso (as the loss is twice differentiable). Our algorithm starts at λ = ∞
and follows the linear pieces, while identifying the “events” and re-calculating
the direction when they occur. Notice that the algorithm does not calculate λ
explicitly, since the direction calculations and step-length calculations do not
require to track the λ values.

Algorithm 1 An algorithm for “almost quadratic” loss with l1 penalty

1. Initialize: β = 0, A = arg maxj |∇L(β)|j , γA = −sgn(∇L(β))A, γAC =
0

2. While (max|∇L(β)| > 0)

(a) d1 = min{d > 0 : |∇L(β + dγ)j | = |∇L(β + dγ)A|, j /∈ A}

(b) d2 = min{d > 0 : (β + dγ)j = 0, j ∈ A} (hit 0)

(c) d3 = min{d > 0 : r(yi, (β + dγ)Txi) hits a “knot”, i = 1, . . . , n}

(d) set d = min(d1, d2, d3)

(e) β ← β + dγ

12



(f) If d = d1 then add variable attaining equality at d to A.

(g) If d = d2 then remove variable attaining 0 at d from A.

(h) If d = d3 for observation i∗, then decide an appropriate value for
a(r(yi∗ , β

Txi∗)) from (13).

(i) C =
∑

i a(r(yi, β
Txi))xA,ix

T

A,i

(j) γA = C−1(−sgn(βA))

(k) γAC = 0

It should be noted that our formulation here of the “almost quadratic” family
with l1 penalty has ignored the existence of a non-penalized intercept. This has
been done for simplicity of exposition, however incorporating a non-penalized
intercept into the algorithm is straight forward (alas not as straight forward as
it is for squared error loss, where centering the predictors allows us to fit the
intercept separately). The functions we use for numerical examples in the next
sections allow for the inclusion of a non-penalized intercept.

3.2 Computational considerations

What is the computational complexity of running Algorithm 1 on a dataset
with n observations and p variables? Let us start by considering the simpler
question of the complexity of the LAR-Lasso algorithm, i.e., Algorithm 1 when
the loss is squared error loss. As [3] discuss, the complexity of LAR-Lasso is
“approximately” that of one least squares calculation, i.e., O(p3+np2) = O(np2)
when n > p. The qualification refers to the fact that “drop” events in Algorithm
1 — that is, if d = d2 in step 2(b) — are not accounted for, and there is no
simple theoretical bound on how many of these events can occur. It stands to
reason that “on average” these events are rare (O(1), see [3] for discussion) but
that cannot be guaranteed.

In the same sense we can say that in the “average” case, the complexity of
Algorithm 1 is O(n2p) when n > p. The additional complexity incurred by this
algorithm is twofold:

• Figuring out the step size requires considering all possible O(n) “knot
crossing” events (step 2(c)), which does not occur in the Lasso.

• Knot crossing events increase the number of steps of the algorithm. The
rarity assumption on drop events made the number of steps of the Lasso
O(p). Here we add the assumption that “knot crossing” events occur only
O(n) times. This second assumption is very reasonable in the “average”
case, since the residuals tend to move monotonically towards 0 as the
regularization parameter λ decreases.

Thus overall we assume we have O(n + p) steps, each requiring:

• O(np + p) = O(np) calculations to figure out the step length (steps 2(a)-
2(d) of Algorithm 1)
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• O(p2) calculations to calculate the new direction (step 2(j)) using the
Sherman-Morrison-Woodbury lemma and the fact that we are either adding
or dropping a single variable or a single observation.

which gives us an overall complexity of O((n+p)np+(n+p)p2) = O(n2p) when
n > p, given our (reasonable, but not guaranteed) assumptions on the number
of steps.

An interesting case, especially in microarray data analysis, is when p À n.
In that case, we can find a least squares solution with a computational cost of
only O(n3) by choosing any n linearly independent predictor variables. Using
similar assumptions to the ones above (i.e., the number of “drop” events is O(1),
and the number of steps is O(n)), we get a computational complexity of O(pn2)
for both the Lasso and Algorithm 1.

In both cases, the complexity of Algorithm 1 is dominated by the step-length
calculations, and the direct “least squares” calculations are less costly.

3.3 The Huberized Lasso for regression

We now concentrate on a detailed statistical and computational analysis of two
members of the “almost quadratic” family of loss functions – one for regression
and one for classification. We choose loss functions which are robust, i.e., linear
for large residuals (or margins). We will build on the previous section, in par-

ticular Algorithm 1, to generate the solution paths β̂(λ) for the l1 regularized
versions of these fitting problems.

We first consider the Huberized Lasso for regression. The loss is given by
(14). It is obviously “almost quadratic” as defined in Section 3.1, and so Theo-
rem 2 and Algorithm 1 apply to its l1 regularized solution paths.

In Section 1.1 we have illustrated on an artificial example the robustness of
the Huberized Lasso against incorrect distributional assumption. In [8], Huber
has shown that “Huberizing” has asymptotic optimality properties in protecting
against “contamination” of the assumed normal errors. For our (very practical)
purpose the main motivating property of the Huberized loss is that it protects
us against both extreme “outliers” and long tailed error distributions.

The one open issue is how to select the “knot” t in (14). [8] suggests t =
1.345σ, where σ2 is the variance of the non-contaminated normal, and describes
an iterative algorithm for fitting the data and selecting t, when the variance is
unknown. Since our Algorithm 1 does not naturally admit changing the knot
as it advances, we need to iterate the whole algorithm to facilitate adaptive
selection of t. This is certainly possible and practical, however for clarity and
brevity we use a fixed-knot approach in our examples.

Prostate cancer dataset

The “prostate cancer” dataset, used in the original Lasso paper [16], is available
from: http://www-stat.stanford.edu/ElemStatLearn/. We use this dataset to
compare the prediction performance of the “Huberized” Lasso to that of the
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Lasso on the original data and after we artificially “contaminate” the data by
adding large constants to a small number of responses.

We use the training-test configuration as in [6], page 48. The training set
consists of 67 observations and the test set of 30 observations. We ran the Lasso
and the Huberized Lasso with “knot” at t = 1 on the original dataset, and on
the “contaminated” dataset where 5 has been added to the response of six
observations, and 5 was subtracted from the response of six other observations.
This contamination is extreme in the sense that the original responses vary
between −0.4 and 5.6, so their range is more than doubled by the contamination,
and practically all contaminated observations become outliers.
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Figure 5: Mean test squared error of the models along the regularized path for the
Lasso (full), Huberized Lasso (dashed), Lasso on contaminated training data (dotted)
and Huberized Lasso on contaminated data (dash-dotted). We observe that the Hu-
berized Lasso is not affected at all by contamination, while the Lasso performance
deteriorates significantly.

Figure 5 shows the mean squared error on the 30 test set observations for the
four resulting regularized solution paths from solving the Lasso and Huberized
Lasso for all possible values of λ on the two datasets. We observe that on the
non-contaminated data, the Lasso (full) and Huberized Lasso (dashed) perform
quite similarly. When we add contamination, the Huberized Lasso (dash-dotted)
does not seem to suffer from it at all, in that its best test set performance is
comparable to that of both regularized models on the non-contaminated data.
The prediction performance of the non-Huberized Lasso (dotted), on the other
hand, deteriorates significantly when contamination is added, illustrating the
lack of robustness of squared error loss.

The two Lasso solutions contain 9 linear pieces each, while the Huber-Lasso
path for the non-contaminated data contains 41 pieces, and the one for the
contaminated data contains 39 pieces; both agree with our conjecture in Section
3.2 that the number of steps is O(n + p). Figure 6 shows the solution paths
for the contaminated Lasso model and the contaminated Huber-Lasso model.
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We observe that the two paths are quite different and the two best models
(corresponding to the solid vertical lines) are also different.
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Figure 6: Solution paths of the Lasso (left) and the Huberized Lasso (right) on the
contaminated prostate cancer training data. The vertical grey lines correspond to the
steps along the solution paths. The vertical solid lines correspond to the models that
give the best performances on the test data.

3.4 The Huberized squared hinge loss for classification

For classification we would like to have a loss which is a function of the mar-
gin: r(y, βTx) = (yβTx). This is true of all loss functions typically used for
classification:

Logistic regression: l(y, βTx) = log(1 + exp(−yβTx))

Support vector machines: l(y, βTx) = (1 − yβTx)+

Exponential loss (boosting): l(y, βTx) = exp(−yβTx)

The properties we would like from our classification loss are:

• We would like it to be “almost quadratic”, so we can apply Algorithm 1.

• We would like it to be robust, i.e., linear for large absolute value negative
margins, so that outliers would have a small effect on the fit. This property
is shared by the loss functions used for logistic regression and support
vector machines. The squared hinge loss (15) and more so the exponential
loss are non-robust in this sense.
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This leads us to suggesting for classification the “Huberized squared hinge loss”,
i.e., (15) “Huberized” at t < 1:

l(r) =







(1 − t)2 + 2(1 − t)(t − r) if r ≤ t
(1 − r)2 if t < r ≤ 1
0 otherwise.

(17)

It is trivial to show that argminfEyl(r(y, f)) = 2Pr(y = 1) − 1, hence the
population minimizer of the Huberized squared hinge loss gives the correct sign
for classification. [21] has also considered this loss function for the t = −1 case,
but more so from a theoretical perspective. It is also worth to note that [15]
has proposed a ψ loss function that is as robust as the 0 − 1 loss function; but
since the ψ loss function is non-convex, we do not consider it in this paper.
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Figure 7: Classification loss functions

Figure 7 compares some of these classification loss functions: the logistic,
exponential, squared hinge loss and our suggested loss function (17), with t =
−1. The exponential and logistic are scaled up by 4 to make comparison easier.
We can see the non-robustness of the squared and more so the exponential in
the way they “diverge” as the margins become negative.

To illustrate the similarity between our loss (17) and the logistic loss, and
their difference from the squared hinge loss (15), consider the following simple
simulated example: x ∈ R

2 with class centers at (−1,−1) (class “-1”) and (1, 1)
(class “1”) with one big outlier at (30, 100), belonging to the class “-1”. The
Bayes model, ignoring the outlier, is to classify to class “1” iff x1 +x2 > 0. The
data and optimal separator can be seen in Figure 8.

Figure 9 shows the regularized model paths and misclassification rate for
this data using the logistic loss (left), the Huberized squared hinge loss (17)
(middle) and the squared hinge loss (15) (right), all with l1 penalty. We observe
that the logistic and Huberized regularized model paths are similar and they are
both less affected by the outlier than the non-Huberized squared loss. Of course,
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logistic loss does not allow for efficient calculation of the l1 regularized path,
and so the logistic regularized path in Figure 9 was calculated by solving the
problem separately for a large number of values of λ and interpolating between
them.
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Figure 8: Simulated classification data (for clarity, only a subset of the data is shown)

4 Non-parametric regression, total variation penal-

ties and piecewise linearity

Total variation penalties and closely associated spline methods for non-parametric
regression have experienced a surge of interest in the statistics literature in re-
cent years. These give a theoretically tractable approach for constructing spline
approximations and analyzing their asymptotic properties. The total variation
of a univariate differentiable function f(x) is:

TVdif (f) =

∫ ∞

−∞

|f ′(x)|dx

If f is non-differentiable on a countable set x1, x2, ..., then TV (f) is the sum of
TVdif (f), calculated over the differentiable set only and the absolute “jumps”
at the non-differentiability points. In what follows we assume the range of f is
limited to [0, 1].

Total variation penalties tend to lead to regularized solutions which are
polynomial splines. [10] investigate the solutions to total-variation penalized
least squares problems. They use total variation of (k − 1)-th order derivatives:

n
∑

i=1

(yi − f(xi))
2 + λTV (f (k−1)) (18)
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Figure 9: Regularized paths and prediction error for the logistic loss (left), Huberized
squared hinge loss (middle) and squared hinge loss (right)

They show (proposition 1) that there always exists a solution f̂k,λ such that

f̂
(k−1)
k,λ is piecewise constant. That is, f̂k,λ is a polynomial spline of order k (or

degree k− 1). For k ∈ {1, 2} the knots of the spline solutions are guaranteed to
be at the data points xi, i = 1, . . . , n.

A similar setup is considered by [1], whose taut-string method eventually
leads to an optimization problem of the sort considered by [10], with k = 1.
The resulting solution is a piecewise constant function in x with possible jumps
at the data points. [1] also consider the “local squeezing” method, which leads
to minimizing the following criterion:

n
∑

i=1

(yi − f(xi))
2 +

n
∑

i=2

λi|f(xi) − f(xi−1)| (19)

with data driven λi. [1] proposed an algorithm to adaptively find λi and the

corresponding f̂ via some grid search.
Although nonparametric regression has traditionally focused on the esti-

mation of conditional mean functions, nonparametric estimation of conditional
quantile functions is often of substantial practical interest. [9] considered the
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regularized problem:

min
f∈F

n
∑

i=1

ρτ (yi − f(xi)) + λ

∫ 1

0

|f ′′(x)|dx (20)

where xi ∈ [0, 1], ρτ (r) = r(τ − I(r < 0)) is the check function, and τ ∈ (0, 1)
indicates the quantile of interest. With appropriately chosen F , [9] showed that
the solution is a linear spline with knots at the points xi, i = 1, . . . , n.

In these examples the solutions are polynomial splines of degree 0 or 1 (that
is, piecewise constant functions or piecewise linear continuous functions), with
knots at the data points. More generally, consider a polynomial spline f of order
k, with h knots located at 0 < t1 < ... < th < 1, that is:

f(x) =

h
∑

j=1

cj(x − ti)
k−1
+ + q(x) (21)

where q(x) is a polynomial of degree k− 1. The total variation of the (k− 1)-th
derivative of f clearly corresponds to an l1 norm of the set of coefficients of the
appropriate spline basis functions, anchored at the knots:

TV (f (k−1)) = (k − 1)! ·

r
∑

j=1

|cj | (22)

If the knots t1, ..., th are fixed in advance (in the examples above, at the data
points), then a total variation penalized problem thus reduces to an equivalent
l1-penalized regression problem, with p = h derived predictors. If we also employ
squared error loss, we get a Lasso problem, and we can use the LAR-Lasso
algorithm to compute the complete regularized solution path 3. This leads to
essentially the same algorithm as Algorithm 2 of [10] for finding the regularized
path for any k with a fixed, pre-determined set of candidate knots. [10] also
show that this algorithm can in fact generate an exact path of solutions for
k ∈ {1, 2}, because the knots are guaranteed to be at the data points. If instead
of squared loss we employ a quantile regression loss in as in (20), this leads to
an equivalent l1-penalized, l1-loss problem, of the kind we discuss in Section 5.1.

4.1 Locally Adaptive Regression Splines

We now concentrate on the family of penalized problems defined by Mammen
and van de Geer (18). As we mentioned, [10] develop an exact method for

finding f̂k,λ when k ∈ {1, 2} and approximate methods for k > 2 (where the
knots of the optimal solutions are not guaranteed to be at the data points).

We now show how we can use our results above to find the spline solution f̂k,λ

3The only difference from the standard Lasso is the existence of k non-penalized coefficients
for the polynomial q(x), instead of the intercept only for the Lasso. This requires only a slight
modification to the LAR-Lasso algorithm.
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exactly for any natural k. The resulting algorithms get more complicated as k
increases, but their computational complexity remains fixed.

When the knots are not guaranteed to be at the data points, we can still write
the total variation of polynomial splines as the sum of l1 norms of coefficients
of basis functions, as in (22). However, we do not have a finite pre-defined
set of candidate basis functions. Rather, we are dealing with an infinite set of
candidate basis functions of the form:

X = {(x − t)k−1
+ : 0 ≤ t ≤ 1}

Our algorithm for tracking the regularized solution path f̂k,λ in this case
proceeds as follows. We start at the solution for λ = ∞, which is the least
squares (k − 1)-th degree polynomial fit to the data. Given a solution f̂k,λ0

for
some value of λ0, which includes nλ0

knots at t1, ..., tnλ0
, denote:

z(x) =
(

1, x, x2, ..., xk−1, (x − t1)
k−1
+ , ..., (x − tnλ0

)k−1
+

)T

is the current predictor vector, so that following (21) we can write:

f̂k,λ0
(x) = β̂(λ0)

Tz(x)

Following the logic of the LAR-Lasso algorithm, we see that the solution will
change as:

f̂k,λ0−l = (β̂(λ0) + lγ)Tz(x)

where γ = −(k − 1)! · (ZTZ)−1 · s, Z = (z(x1), ..., z(xn))
T

and s ∈ R
k+nλ0 is

a vector with 0 components corresponding to 1, x, ..., xk−1 and ±1 components
corresponding to each (x − tj)

k−1
+ (with the sign being the opposite of the sign

of (x − tj)
k−1 T

+ (y − xβ̂(λ0))). What we now need to identify is the value of λ
at which an additional knot needs to be added, and the location of that knot.
Consider first a fixed knot candidate t. Then we can see that the LAR-Lasso
criterion for adding this knot to the set of “active” knots is:

|xT

t(y − Zβ̂(λ0) − (λ0 − λ)Zγ)| = λ.

where xt = (x − t)k−1
+ (column vector of length n). More explicitly, define:

λ+(t) =
xT

t(y − Zβ̂(λ0) − λ0Zγ)

1 − xT

tZγ
(23)

λ−(t) =
xT

t(y − Zβ̂(λ0) − λ0Zγ)

−1 − xT

tZγ
(24)

then we can write:

λ(t) =

{

max(λ+(t), λ−(t)) if max(λ+(t), λ−(t)) ≤ λ0

min(λ+(t), λ−(t)) if max(λ+(t), λ−(t)) > λ0
(25)
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Now we see that we can in fact let t be a parameter and find the next knot
to be added to the optimal solution path by maximizing λ(t), that is:

λadd = max
t∈(0,1)\{t1,...,tnλ0

}
λ(t) (26)

is the value of λ where we stop moving in direction γ, add a knot at the argument
of the maximum, and re-calculate the direction γ.

Solving (26) requires finding the local extrema of the functions in (25), which
are rational functions within each interval between two points which are either
data points or knots (with numerator and denominator both of degree k − 1).
Thus, a reasonable tactic is to find the extrema within each such interval, then
compare them between the intervals to find the overall solution to (26). This
is practical for any natural k with numerical programs like Mathematica. For
smaller values of k it can be solved manually and exactly:

• For k ∈ {1, 2}, we get a ratio of constant or linear functions in (25), and
therefore the extrema — and the knot points — are guaranteed to be at
the data points. [10] have used this fact in formulating an exact algorithm
for finding the “path” of piecewise-constant or piecewise-linear solutions
f̂k,λ.

• For k = 3 we get a ratio of quadratics in (25), and we can find the
extrema within each segment analytically by solving for the roots of the
quadratic polynomial we get by differentiating and intersecting them with
the segment. These extrema may not correspond to the segment’s end
points, and so we may have knots that are not at data points.

Note that we do not need to worry about zeros of the denominator in (23,24),
because they can never correspond to a value of t attaining the maximum in
(26).

Assuming we have the code to solve the maximization problem in (26), Al-

gorithm 2 gives a general schema for following the solution path f̂k,λ for any
value of k.

Algorithm 2 Tracking the path of TV-penalized solutions

1. Initialize:

f(x) = (1, x, ..., xk−1)Tβls is the LS polynomial fit of degree k − 1

u = arg max
t∈(0,1)

|(x − t)k−1 T

+ (y − f(x))|

T = u

λ0 = (k − 1)! · |(x − u)k−1 T

+ (y − f(x))|

Z = (1,x, ...,xk−1, (x − u)k−1
+ )

β̂(λ0) = (βT

ls, 0)T

s =
(

0T

k,−sgn{(x − u)k−1 T

+ (y − f(x))}
)T
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2. While
∑

i(yi − f(xi))
2 > 0

(a) Set γ = (k − 1)!(ZTZ)−1s

(b) ∀t ∈ (0, 1) \ T define λ+(t), λ−(t), λ(t) as in (23, 24, 25)

(c) Solve the maximum problem in (26) to get λadd.

(d) Find λrem, that is:

λrem = λ0 − arg min{l > 0 : ∃j > k s.t. β̂j(λ0) + lγj = 0}

(e) If λadd > λrem add a knot at the point attaining the maximum in
(26), update:
add the new knot to T ;
add a column to Z; and
add the appropriate sign to s.

(f) If λadd < λrem remove the knot attaining 0 at λrem:
remove the knot from T ;
remove the corresponding column from Z; and
remove the corresponding entry from s.

(g) In both cases, update:

set β̂(λ0) ← β̂(λ0) + (λ0 − max(λadd, λrem))γ;
set λ0 = max(λadd, λrem).

(h) Return to 2.

Since we can never have more than (n − k) knots in a solution f̂k,λ [14],
the computational complexity of each iteration of the algorithm is bounded
at O(n2) calculations for finding the next knot and O(n2) for calculating the
next direction (using updating formulae). We conjecture that B-splines can be
leveraged to reduce complexity as in [10] but have no concrete results on that.
The number of steps of the algorithm is difficult to bound, but from our limited
experience seems to behave like O(n) (which is the conjecture of [10]).

4.2 Simple data example: k = 3

We illustrate our algorithm on a simple data example, with no noise, but where
the true knots are not at data points. We generate the data according to the
model:

y =















0.125 − x2 if x ≤ 0.25
(x − 0.5)2 if 0.25 ≤ x ≤ 0.5
−(x − 0.5)2 if 0.5 ≤ x ≤ 0.75
−0.125 + x2 if 0.75 ≤ x

(27)

that is, a quadratic spline with knots at 0.25, 0.5, 0.75. We generate uniformly
spaced data in x ∈ (0, 0.4]∪ [0.6, 1). Thus, the knot at 0.5 is far from the closest
data points. The resulting sample is shown as the small circles in Figure 10.

We then run our Algorithm 2 with k = 3. The first knot selected is indeed
at 0.5 exactly, and the algorithm takes six more steps to converge to the correct
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Figure 10: Applying Algorithm 2 to our data example with k = 3

set of knots at 0.25, 0.5, 0.75 and consequently the correct model from which
the data was generated. Figure 10 shows the models generated by Algorithm 2
after one, four and finally seven steps.

5 Other piecewise linear models of interest

Our discussion so far has concentrated on generalizations of the LAR-Lasso al-
gorithm. We now survey some problems with piecewise linear solution paths,
but whose general solution requires us to build fundamentally different, and
more complex, algorithms. We first discuss the use of l1-type loss functions
with l1 regularization, as in the 1-norm support vector machine and l1 regular-
ized quantile regression [9]. We then consider the case where multiple penalty
functions are required to represent the appropriate regularization.

5.1 Using l1 loss and its variants

Piecewise-linear non-differentiable loss functions appear in practice in both re-
gression and classification problems. For regression, absolute value loss variants
are quite popular, in particular quantile regression [9]:

l(y, βTx) =

{

τ · |y − βTx| if y − βTx ≥ 0
(1 − τ) · |y − βTx| if y − βTx < 0

(28)
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For classification, the hinge loss is of great importance, as it is the loss underlying
support vector machines [19]:

l(y, βTx) = (1 − yβTx)+ (29)

Here we consider a generalized formulation, which covers both of (28,29), with
a loss function of the form:

l(r) =

{

b1 · |a + r| if a + r ≥ 0
b2 · |a + r| if a + r < 0

(30)

with the generalized “residual” being:

r =

{

y − βTx for regression
y · βTx for classification

(31)

When these loss functions are combined with l1 penalties (or total varia-
tion, in appropriate function classes), the resulting regularized problems can be
formulated as linear programming problems. When the path of regularized so-
lutions β̂(λ) is considered, it turns out to have interesting structure with regard
to λ:

Proposition 3 For loss functions of the form (30), there exists a set of values
of the regularization parameter λ0 = 0 < λ1 < . . . < λm = ∞ such that:

• The solution β̂(λk) is not uniquely defined, and the set of optimal solutions
for each λk is a straight line in R

p

• ∀λ ∈ (λk, λk+1) the solution β̂(λ) is fixed and equal to the minimum l1
norm solution for λk and the maximum l1 norm solution for λk+1.

Proposition 3 generalizes observations on the path of solutions made in the
context of quantile regression in [9] and in the context of 1-norm support vector
machines in [22]. The arguments given in these references easily generalize to
prove it. Note that this leads to describing a regularized path which is piecewise
constant as a function of the regularization parameter λ, with jumps at the
values λ1, ..., λm. It is still piecewise linear in the l1 norm of the solution path,
|β̂(λ)|. Figure 11, reproduced from [22], illustrates this for the 1-norm SVM on
a simple 5-variable simulated example.

Algorithm 3 gives a general path-following solution to all problems of the
form (30) with l1 penalty. It is interesting to note the fundamental differences
between this algorithm and Algorithm 1 for differentiable almost-quadratic loss
functions. In Algorithm 1 the direction of the regularized path is solely deter-
mined by the points in the “quadratic” pieces of the loss function. Here the
direction of the path is solely determined by the points directly at the “elbow”
E (the non-differentiability point of the loss function).
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To formulate our algorithm for finding the solution path, we first define:

A = {j : βj 6= 0} Active set of variables

E = {i : a + ri = 0} Elbow set of observations

L = {i : a + ri < 0} Left of the elbow

R = {i : a + ri > 0} Right of the elbow

∆r(y,∆f) =

{

−∆f for regression
y · ∆f for classification

∆L(γ) = b1

∑

R

∆r(yi, γ
Txi) − b2

∑

L

∆r(yi, γ
Txi)

The idea of the algorithm is to start with a variable that can decrease the loss the
fastest per unit of change in this variable’s coefficient. The solution moves along
that direction and pauses whenever one of the following two events happens:

• A data point hits the non-differentiable point of the loss, i.e. a + r 6= 0
becomes a + r = 0 for some i. Hence this data point is added to E .

• A fitted coefficient hits the non-differentiable point of the penalty, i.e. βj

changes from non-zero to zero for some j. Hence this variable is removed
from A.

Then there are two possible types of actions one can take

• Add a variable into A

• Remove a data point from E

Again, the chosen action is determined by the one that can decrease the loss the
fastest, per “unit” of l1 norm increase in the coefficient vector, and the solution
would change along a new direction such that the data points in E linger on E .
The detailed algorithm proceeds as the following:

Algorithm 3 An algorithm for l1 loss + l1 penalty

1. Initialize

β = 0

A = arg max
j

|∆L(ej)|

γj = −sign(∆L(ej)), j ∈ A

γj = 0, j ∈ Ac

∆L∗ = max
j

|∆L(ej)|

where ej is a vector with the jth element equal to 1 and other elements
equal to 0.

2. While ∆L∗ 6= 0
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(a) d1 = min{d > 0 : (β + dγ)j = 0, j ∈ A}

(b) d2 = min{d > 0 : a + r(yi, (β + dγ)Txi) = 0, i = 1, . . . , n}

(c) set d = min(d1, d2)

(d) β ← β + dγ

(e) If d = d1, then remove the variable attaining 0 at d from A; if d = d2,
add the observation attaining the elbow to E

(f) For each j∗ ∈ Ac, solve for γ







∑

j∈A γjxij + γj∗xij∗ = 0 for i ∈ E
∑

j∈A sign(βj)γj + |γj∗ | = 1

γj = 0 for j /∈ A ∪ {j∗}

Compute

∆L(γ) = b1

∑

R

∆r(yi, γ
Txi) − b2

∑

L

∆r(yi, γ
Txi)

(g) For each i∗ ∈ E, solve for γ







∑

j∈A γjxij = 0 for i ∈ E\{i∗}
∑

j∈A sign(βj)γj = 1

γj = 0 for j ∈ Ac

Compute

∆L(γ) = b1

∑

R

∆r(yi, γ
Txi) − b2

∑

L

∆r(yi, γ
Txi)

(h) Choose the smallest value of ∆L(γ) from step 2f and step 2g. Let
∆L∗ = min ∆L(γ).

• If ∆L∗ corresponds to a j∗ in step 2f, update γ and

A ← A∪ {j∗}

• If ∆L∗ corresponds to a i∗ in step 2g, update γ and

E ← E\{i∗}, L ← L ∪ {i∗} or R ← R∪ {i∗}

• If ∆L∗ is non-negative, set ∆L∗ = 0.

(i) Return to 2

An interesting variant of piecewise linear loss is to replace the l1 loss with an
l∞ loss, which is also piecewise linear and non-differentiable. Similar properties
hold for that case, i.e., the solution paths are piecewise-linear and path-following
algorithms can be used to generate them. However working out the details and
implementing algorithms for this case remains as a future task.
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Figure 11: The solution path β̂(λ) as a function of ‖β̂(λ)‖1 for the 1-norm SVM.

5.2 Multiple penalty problems

Suppose now that we would like to penalize more than one function of the
coefficients, i.e., solve:

β̂(λ1, λ2, ..., λq) = min
β

L(y,Xβ) + λ1J1(β) + λ2J2(β) + ... + λqJq(β)

then the theory we have developed tells us that as long as all penalties and the
loss follow the conditions we have defined for piecewise linearity, the solution
β̂(λ1, λ2, ..., λq) will be a piecewise affine surface in R

p. In particular, if we limit
our interest to a 1-dimensional line in (λ1, λ2, ..., λq) space, i.e., λk = bkλ1, we
get a piecewise linear solution path. We consider here two examples of multiple
penalty problems which are of statistical interest.

A natural application of this idea is for local penalties, where the penalty
functions are Jk(β) = |βk| and the different λk’s correspond to different scaling
factors for the predictor variables. [1] suggested a problem formulation in this
spirit for non-parametric regression, and solved it by an ad-hoc search method
over the space spanned by λ1, ..., λp. This is attractive because the l1 penalty
is not scale or rotation invariant, and so the “correct” scaling for the predictor
variables may not be known in advance. It can also be viewed as assigning vary-
ing “importance” to different variables by penalizing them more or less. General
exploration of the p-dimensional surface of solution implied by setting the val-
ues of λ1, ..., λp is a difficult problem, which requires significant generalization of
the theory presented here (the area of multi-parametric quadratic programming
offers some relevant tools, although no general efficient tools. See for example
[18]). However, if we limit our interest to a line in this p-dimensional space, then
our algorithms for the relevant loss can be applied almost as-is. For example,
assume we wanted to find the solution path for a local-penalty version of the
Lasso, with the λk’s limited to a line:

β̂(λ) = arg min
β

‖y − Xβ‖2
2 + λ|β1| + b2λ|β2| + ... + bpλ|βp|

with b1 = 1, b2, ..., bp being non-negative constants (independent of λ). Then
the LAR-Lasso algorithm, or alternatively our Algorithm 1, can be applied
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almost as-is, with minimal changes required to account for the “scaling factors”
bk, k = 1, ..., p. For example, step 2(a) should be changed to:

2(a)∗ d1 = min{d > 0 :
|∇L(β+dγ)j |

bj
= |∇L(β+dγ)k|

bk
, j /∈ A, k ∈ A}

We eliminate the rest of the changes for brevity.
An example where a specific two-penalty formulation is natural and of great

practical interest in a specific application can be found in our recent paper [17].
The problem considered is that of protein mass spectroscopy, and the predictors
correspond to a continuum of “time of flight” sites. Thus the predictors have
an order and a distance between them, and there are scientific reasons why we
would expect neighboring coefficients to be much more correlated than distant
ones. We would like a method which strongly prefers to make neighboring
coefficients similar, while still limiting the amount of non-zero coefficients. A
natural way to achieve that is to include a separate penalty on magnitude of
coefficients and on differences of neighboring coefficients. This gives us the
Fused Lasso estimate:

minβ ‖y − Xβ‖2 + λ1

∑

j

|βj | + λ2

∑

j>1

|βj − βj−1|

In [17] we discuss the issues involved in using the piecewise linearity of the
solution path to design an efficient algorithm for this problem. Our future
project is to formulate a path-following algorithm which would be computa-
tionally preferable to solving the problem separately at a number of (λ1, λ2)
values.

6 Discussion

In this paper we have combined computational and statistical considerations
in designing regularized modeling tools. We emphasize the importance of both
appropriate regularization and robust loss functions for successful practical mod-
eling of data. From a statistical perspective, we can consider robustness and
regularization as almost independent desirable properties dealing with different
issues in predictive modeling:

• Robustness mainly protects us against wrong assumptions about our error
(or noise) model. It does little or nothing to protect us against the un-
certainty about our model structure which is inherent in the finiteness of
our data. For example, if our errors really are normal, then squared error
loss minimizes the asymptotic variance of the coefficients, no matter how
little data we have or how inappropriate our model is [8]. Using a robust
loss in such a situation is always counter productive.

• Regularization deals mainly with the uncertainty about our model struc-
ture by limiting the model space. Note, in this context, the equivalence
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between the “penalized” formulation (1) and a “constrained” formulation:

min
β

L(y,Xβ) s.t. J(β) ≤ s (32)

The two formulations are equivalent in the sense that every solution β̂(s)

to (32) is equal to a solution β̂(λ) to (1) for some value of λ and vice versa
((1) is in fact just a Lagrange multiplier version of (32)). Thus the main
goal of regularization is to make the model estimation problem easier, and
match it to the amount of information we have for estimating it, namely
our training data.

We can also take a Bayesian approach, in which case the penalized optimiza-
tion problem (1) corresponds to maximizing a posterior likelihood, if J(β) is a
log-prior on the model space and L is a log-likelihood (for example, the Lasso
maximizes posterior with i.i.d Gaussian error model and i.i.d double-exponential
priors on the model coefficients). The more vague Bayesian interpretation for
using robust loss would be that it represents a reluctance to commit to a specific
error model, electing instead to use a “non-informative” one which can accom-
modate a range of reasonable error models, in particular ones contaminated by
outliers, without suffering significant degradation in performance.

There are many interesting directions in which our work can be extended:

• How can our geometric understanding of the regularized solution paths
help us to analyze the statistical properties of the models along the path?
For example, [3] have offered a limited analysis of the degrees of freedom
of models along the Lasso path. This becomes much more challenging, of
course, once we stray away from squared error loss.

• Our algorithms typically require considering all possible variables in X in
every step, and so are not generally applicable for very high dimensional
problems, or ones where the data is embedded into high (even infinite) di-
mensional spaces. However, we have seen in this paper one example (Sec-
tion 4.1) where the algorithm we suggest actually finds the path of optimal
solutions in an infinite dimensional predictor space, defined by all possible
k-th order splines on [0, 1]. The interesting question is, what characterizes
these high dimensional spaces, where we can design and implement effi-
cient approaches for searching for the variables in our regularized models,
instead of enumerating over all possible candidates?
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