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We consider the generic regularized optimization problem β̂(λ) =

arg minβ L(y, Xβ) + λJ(β). Efron et al. (2004) have shown that for

the LASSO — that is, if L is squared error loss and J(β) = ‖β‖1 is the

�1 norm of β — the optimal coefficient path is piecewise linear, i.e.,

∂β̂(λ)/∂λ is piecewise constant. We derive a general characterization

of the properties of (loss L, penalty J) pairs which give piecewise

linear coefficient paths. Such pairs allow for efficient generation of

the full regularized coefficient paths. We investigate the nature of ef-

ficient path following algorithms which arise. We use our results to

suggest robust versions of the LASSO for regression and classifica-

tion, and to develop new, efficient algorithms for existing problems in

the literature, including Mammen & van de Geer’s locally adaptive

regression splines.

1. Introduction. Regularization is an essential component in modern

data analysis, in particular when the number of predictors is large, possibly

larger than the number of observations, and non-regularized fitting is likely

to give badly over-fitted and useless models.

In this paper we consider the generic regularized optimization problem.
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• A training data sample X = (x1, ...,xn)T, y = (y1, ..., yn)T, where

xi ∈ R
p and yi ∈ R for regression, yi ∈ {±1} for 2-class classification.

• A convex non-negative loss functional L : R
n × R

n → R

• A convex non-negative penalty functional J : R
p → R, with J(0) =

0. We will almost exclusively use J(β) = ‖β‖q in this paper, i.e.,

penalizing the �q norm of the coefficient vector.

We want to find:

β̂(λ) = arg min
β∈Rp

L(y, Xβ) + λJ(β), (1)

where λ ≥ 0 is the regularization parameter: λ = 0 corresponds to no

regularization, while limλ→∞ β̂(λ) = 0.

Many of the commonly used methods for data mining, machine learning

and statistical modeling can be described as exact or approximate regu-

larized optimization approaches. The obvious examples from the statistics

literature are explicit regularized linear regression approaches, such as ridge

regression [9] and the LASSO [17]. Both of these use squared error loss, but

they differ in the penalty they impose on the coefficient vector β:

Ridge: β̂(λ) = min
β

n∑
i=1

(yi − xT
i β)2 + λ‖β‖2

2, (2)

LASSO: β̂(λ) = min
β

n∑
i=1

(yi − xT
i β)2 + λ‖β‖1. (3)

Another example from the statistics literature is the penalized logistic re-

gression model for classification, which is widely used in medical decision

and credit scoring models:

β̂(λ) = min
β

n∑
i=1

log(1 + e−yix
T
i β) + λ‖β‖2

2.
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Many “modern” methods for machine learning and signal processing can

also be cast in the framework of regularized optimization. For example, the

regularized support vector machine [20] uses the hinge loss function and the

�2-norm penalty:

β̂(λ) = min
β

n∑
i=1

(1 − yixT
i β)+ + λ‖β‖2

2, (4)

where (·)+ is the positive part of the argument. Boosting [6] is a popular

and highly successful method for iteratively building an additive model from

a dictionary of “weak learners”. In [15] we show that the AdaBoost algo-

rithm approximately follows the path of the �1-regularized solutions to the

exponential loss function e−yf as the regularizing parameter λ decreases.

In this paper, we concentrate our attention on (loss L, penalty J) pairings

where the optimal path β̂(λ) is piecewise linear as a function of λ, i.e.,

∃λ0 = 0 < λ1 < . . . < λm = ∞ and γ0, γ1, . . . , γm−1 ∈ R
p such that

β̂(λ) = β̂(λk) + (λ − λk)γk for λk ≤ λ ≤ λk+1. Such models are attractive

because they allow us to generate the whole regularized path β̂(λ), 0 ≤

λ ≤ ∞ simply by sequentially calculating the “step sizes” between each two

consecutive λ values and the “directions” γ1, . . . , γm−1. Our discussion will

concentrate on (L, J) pairs which allow efficient generation of the whole

path and give statistically useful modeling tools.

A canonical example is the LASSO (3). Recently [3] have shown that

the piecewise linear coefficient paths property holds for the LASSO, and

suggested the LAR-LASSO algorithm which takes advantage of it. Similar

algorithms were suggested for the LASSO in [14] and for total-variation

penalized squared error loss in [13]. We have extended some path-following

ideas to versions of the regularized support vector machine [8, 21].
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In this paper, we systematically investigate the usefulness of piecewise

linear solution paths. We aim to combine efficient computational methods

based on piecewise linear paths and statistical considerations in suggest-

ing new algorithms for existing regularized problems and in defining new

regularized problems. We tackle three main questions:

1. What are the “families” of regularized problems that have the piece-

wise linear property? The general answer to this question is that the

loss L has to be a piecewise quadratic function and the penalty J has

to be a piecewise linear function. We give some details and survey the

resulting “piecewise linear toolbox” in Section 2.

2. For what members of these families can we design efficient algorithms,

either in the spirit of the LAR-LASSO algorithm, or using different

approaches? Our main focus in this paper is on direct extensions of

LAR-LASSO to “almost-quadratic” loss functions (Section 3) and to

non-parametric regression (Section 4). We briefly discuss some non-

LAR type results for �1 loss in Section 5.

3. Out of the regularized problems we can thus solve efficiently, which

ones are of statistical interest? This can be due to two distinct reasons:

(a) Regularized problems that are widely studied and used are ob-

viously of interest, if we can offer new, efficient algorithms for

solving them. In this paper we discuss in this context locally

adaptive regression splines [13] (Section 4.1), quantile regression

[11], and support vector machines (Section 5).

(b) Our efficient algorithms allow us to pose statistically motivated

regularized problems that have not been considered in the liter-
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ature. In this context, we propose robust versions of the LASSO

for regression and classification (Section 3).

2. The Piecewise Linear Toolbox. For the coefficient paths to be

piecewise linear, we require that ∂β̂(λ)
∂λ /‖∂β̂(λ)

∂λ ‖ is a piecewise constant vector

as a function of λ. Using Taylor expansions of the normal equations for the

minimizing problem (1), we can show that if L, J are both twice differentiable

in the neighborhood of a solution β̂(λ), then:

∂β̂(λ)
∂λ

= −
[
∇2L

(
β̂(λ)

)
+ λ∇2J

(
β̂(λ)

)]−1
∇J

(
β̂(λ)

)
. (5)

where we are using the notation L(β̂(λ)) in the obvious way, i.e., we make

the dependence on the data X, y (here assumed constant) implicit.

Proposition 1 A sufficient and necessary condition for the solution path to

be linear at λ0 when L, J are twice differentiable in a neighborhood of β̂(λ0)

is that:

−
[
∇2L

(
β̂(λ)

)
+ λ∇2J

(
β̂(λ)

)]−1
∇J

(
β̂(λ)

)
(6)

is a proportional (i.e., constant up to multiplication by scalar) vector in R
p

as a function of λ in a neighborhood of λ0.

Proposition 1 implies sufficient conditions for piecewise linearity:

• L is piecewise quadratic as a function of β along the optimal path

β̂(λ), when X, y are assumed constant at their sample values; and

• J is piecewise linear as a function of β along this path.

We devote the rest of this paper to examining some families of regularized

problems which comply with these conditions.

On the loss side, this leads us to consider functions L which are:
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• Pure quadratic loss functions, like that of the linear regression.

• A mixture of quadratic and linear pieces, like Huber’s loss [10]. These

loss functions are of interest because they generate robust modeling

tools. They will be the focus of section 3.

• Loss functions which are piecewise linear. These include several widely

used loss functions, like the hinge loss of the support vector machine

(4) and the check loss of the quantile regression [11]:

L(y, Xβ) =
∑

i

l(yi, β
Txi),

where

l(yi, β
Txi) =

⎧⎨
⎩

τ · (yi − βTxi) if yi − βTxi ≥ 0

(1 − τ) · (βTxi − yi) otherwise
, (7)

and τ ∈ (0, 1) indicates the quantile of interest.

On the penalty side, our results lead us to consider the �1 and �∞ penalties

as building blocks for piecewise linear solution paths. For lack of space, we

limit the discussion in this paper to the �1 penalty and its variants (like total

variation penalties discussed in Section 4). Results on the �∞ penalty can

be found in a full technical report on the second author’s homepage.

�1 regularization has several favorable statistical properties. Using �1 regu-

larization results in “sparse” solutions with a relatively small fraction of non-

zero coefficients, as opposed to �2 regularization which forces all non-zero

coefficients [17]. In particular, if the number of predictors is larger than the

number of observations (p > n), then for any λ, there exists an �1-regularized

solution with at most n non-zero coefficients [15]. Thus, in situations where

the number of relevant variables is small and there are a lot of irrelevant
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“noise” variables, �1 regularization may prove far superior to �2 regulariza-

tion from a prediction error perspective. From an inference/interpretation

perspective, �1 regularization gives “smooth” variable selection and more

compact models than �2 regularization. In the case of orthogonal wavelet

bases, the soft thresholding method proposed by [2], which is equivalent to

�1 regularization, is asymptotically nearly optimal (in a minimax sense) over

a wide variety of loss functions and estimated functions.

It is not surprising, therefore, that �1 regularization and its variants have

been widely and successfully used in different fields, including engineering

and signal processing (as basis pursuit and wavelet thresholding), machine

learning (as boosting and �1 SVM) and, obviously, statistics, where �1 and

total variation penalties are prevalent.

3. Almost Quadratic Loss Functions with �1 Penalty. In this sec-

tion, we first define a family of “almost quadratic” loss functions whose

�1-penalized versions generate piecewise linear solution paths. We formulate

and prove an algorithm, which is an extension of the LAR-LASSO algorithm,

that generates the �1-penalized solution paths for all members of this family.

We then concentrate on two members of this family – Huberized LASSO for

regression and �1-penalized Huberized squared hinge loss for classification –

which define new, robust, efficient and adaptable modeling tools. An R im-

plementation of these tools is available from the second author’s homepage

(www.stat.lsa.umich.edu/∼jizhu/code/piecewise).

3.1. Main results. We fix the penalty to be the �1 penalty:

J(β) = ‖β‖1 =
∑

j

|βj |, (8)
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and the loss is required to be differentiable and piecewise quadratic in a

fixed function of the sample response and the “prediction” βTx:

L(y, Xβ) =
∑

i

l(yi, β
Txi) , l(y, βTx) = a(r)r2 + b(r)r + c(r) (9)

where r = (y − βTx) is the residual for regression and r = (yβTx) is the

margin for classification; and l(r) is a quadratic spline, i.e., a(·), b(·), c(·) are

piecewise constant functions, defined so as to make the function l differen-

tiable.

Some examples from this family are:

• The squared error: l(y, βTx) = (y − βTx)2, i.e., a ≡ 1, b ≡ 0, c ≡ 0.

• Huber’s loss function with fixed knot t:

l(y, βTx) =

⎧⎨
⎩

(y − βTx)2 if |y − βTx| ≤ t

2t|y − βTx| − t2 otherwise.
(10)

• Squared hinge loss for classification:

l(y, βTx) = (1 − yβTx)2+ (11)

Note that the hinge loss of the support vector machine and the check loss

of the quantile regression do not belong to this family as they are not dif-

ferentiable at yβTx = 1 and y − βTx = 0 respectively.

Theorem 2 All regularized problems of the form (1) using (8),(9) (with r

being either the residual or the margin) generate piecewise linear optimal

coefficient paths β̂(λ) as the regularization parameter λ varies.

Proof We prove the theorem formally using the Karush-Kuhn-Tucker for-

mulation of the optimization problem.



PIECEWISE LINEAR SOLUTION PATHS 9

We re-write the regularized optimization problem:

min
β+,β−

∑
i

l(yi, (β+ − β−)Txi) + λ
∑

j

(β+
j + β−

j )

subject to β+
j ≥ 0, β−

j ≥ 0, ∀j.

The Lagrange primal function is:

∑
i

l(yi, (β+ − β−)Txi) + λ
∑

j

(β+
j + β−

j ) −
∑

j

λ+
j β+

j −
∑

j

λ−
j β−

j .

The derivatives of the primal and the corresponding KKT conditions imply:

(∇L(β))j + λ − λ+
j = 0 , −(∇L(β))j + λ − λ−

j = 0

λ+
j β+

j = 0 , λ−
j β−

j = 0

Using these we can figure that at the optimal solution for fixed λ the fol-

lowing scenarios should hold:

λ = 0 ⇒ (∇L(β))j = 0 ∀j (unconstrained solution)

β+
j > 0, λ > 0 ⇒ λ+

j = 0 ⇒ (∇L(β))j = −λ < 0 ⇒

⇒ λ−
j > 0 ⇒ β−

j = 0

β−
j > 0, λ > 0 ⇒ β+

j = 0 (by similar reasoning)

|(∇L(β))j | > λ ⇒ contradiction

Based on these possible scenarios we can see that:

• Variables can have non-zero coefficients only if their “generalized ab-

solute correlation” |∇L(β̂(λ))j | is equal to λ. Thus, for every value of

λ we have a set of “active” variables A = {j : β̂j(λ) �= 0} such that:

j ∈ A ⇒ |∇L(β̂(λ))j | = λ, sgn(∇L(β̂(λ))j) = −sgn(β̂(λ)j) (12)

j /∈ A ⇒ |∇L(β̂(λ))j | ≤ λ (13)
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• When λ changes, the direction in which β̂(λ) is moving, i.e. ∂β̂(λ)
∂λ ,

should be such that it maintains the conditions (12),(13).

So, if we know what the “active” set A is, it is a simple task to check that

as long as we are in a region where the loss is twice differentiable and the

penalty is right differentiable, we will have

∂β̂(λ)A
∂λ

= −(∇2L(β̂(λ))A)−1sgn(β̂(λ)A), (14)

which is just a version of (5), limited to only the active variables and sub-

stituting the �1 penalty for J .

For the family of almost quadratic loss functions, we can derive ∇2L(β̂(λ))A

explicitly:

∇2L(β̂(λ))A =
∑

i

2a(r(yi, β̂(λ)T
AxAi))xAixT

Ai.

Since a(·) is a piecewise constant function, then ∇2L(β̂(λ))A and ∂β̂(λ)A/∂λ

are also piecewise constant; therefore, the solution path β̂(λ) is piecewise

linear.

When one of the following “events” occurs, twice differentiability is vio-

lated and hence the direction in (14) will change:

• Add a variable: A new variable should join A, i.e., we reach a point

where |∇L(β̂(λ))AC | ≤ λ would cease to hold if β̂(λ) keeps moving in

the same direction.

• Drop a variable: A coefficient in A hits 0. In that case, we reach a non-

differentiability point in the penalty and we can see that sgn(∇L(β̂(λ))A)

= −sgn(βA) would cease to hold if we continue in the same direction.

Thus we need to drop the coefficient hitting 0 from A.
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• Cross a knot: A “generalized residual” r(yi, β̂(λ)Txi) hits a non-twice

differentiability point (a “knot”) in L, for example the “Huberizing”

point t in (10), or the hinge point 1 in (11).

So we conclude that the path β̂(λ) will be piecewise linear, with the direc-

tion given by (14) and direction changes occurring whenever one of the three

events above happens. When it happens, we need to update A or a(r) to

get a feasible scenario and re-calculate the direction using (14).

Based on the arguments in the proof we can derive a generic algorithm to

generate coefficient paths for all members of the “almost quadratic” family

of loss functions with �1 penalty. The LAR-LASSO algorithm [3] is a sim-

plified version of this algorithm since “knot crossing” events do not occur

in the LASSO (as the loss is twice differentiable). Our algorithm starts at

λ = ∞ and follows the linear pieces, while identifying the “events” and

re-calculating the direction when they occur.

Algorithm 1 An algorithm for “almost quadratic” loss with �1 penalty

1. Initialize:

β = 0, A = arg maxj |∇L(β)|j , γA = −sgn(∇L(β))A, γAC = 0.

2. While (max |∇L(β)| > 0)

(a) d1 = min{d > 0 : |∇L(β + dγ)j | = |∇L(β + dγ)A|, j /∈ A}

d2 = min{d > 0 : (β + dγ)j = 0, j ∈ A} (hit 0)

d3 = min{d > 0 : r(yi, (β + dγ)Txi) hits a “knot”, i = 1, . . . , n}

Find step length: d = min(d1, d2, d3)

(b) Take step: β ← β + dγ
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(c) If d = d1 then add variable attaining equality at d to A.

If d = d2 then remove variable attaining 0 at d from A.

If d = d3 for i∗, then assign new a(r(yi∗ , β
Txi∗)) from (9).

(d) Calculate new direction:

C =
∑

i a(r(yi, β
Txi))xA,ixT

A,i

γA = C−1 · sgn(βA) and γAC = 0

It should be noted that our formulation here of the “almost quadratic”

family with �1 penalty has ignored the existence of a non-penalized intercept.

This has been done for simplicity of exposition, however incorporating a

non-penalized intercept into the algorithm is straight forward.

3.2. Computational considerations. What is the computational complex-

ity of running Algorithm 1 on a dataset with n observations and p variables?

The major computational cost for each step involves figuring out the step

length in (2a), and updating the new direction in (2d). The former takes

O(np) calculations, and the latter requires O(|A|2) computations by using

inverse updating and downdating.

It is difficult to predict the number of steps on the solution path for any

arbitrary data. According to our experience, the total number of steps taken

by the algorithm is on average O(n). This can be heuristically understood

as follows: if n > p, it takes O(p) steps to add all variables and O(n) steps

for knot crossing; if n < p, since at most n variables are allowed in the fitted

model, it takes O(n) steps for both adding variables and crossing knots;

the “drop events” are usually rare O(1). Since the maximum value of |A| is

min(n, p), it suggests the overall computational cost is O(n2p).
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3.3. The Huberized LASSO for regression. We now concentrate on two

members of the “almost quadratic” family of loss functions – one for regres-

sion and one for classification.

We first consider the Huberized LASSO for regression. The loss is given

by (10). It is robust in the sense defined in [10], that it protects against

“contamination” of the assumed normal errors. It is “almost quadratic” as

defined in Section 3.1, and so Theorem 2 and Algorithm 1 apply to its �1

regularized solution paths.

Prostate cancer dataset. We use the “prostate cancer” dataset [17] to

compare the prediction performance of the Huberized LASSO to that of the

LASSO on the original data and after we artificially “contaminate” the data

by adding large constants to a small number of responses.

We use the training-test split as in [7]. The training set consists of 67

observations and the test set of 30 observations. We ran the LASSO and the

Huberized LASSO with knot at t = 1 on the original dataset, and on the

“contaminated” dataset where 5 has been added/subtracted to the response

of 12 observations.

Figure 1 shows the mean squared error on the 30 test set observations

for the four resulting regularized solution paths from solving the LASSO

and Huberized LASSO for all possible values of λ on the two datasets. We

observe that on the non-contaminated data, the LASSO (solid) and Huber-

ized LASSO (dashed) perform quite similarly. When we add contamination,

the Huberized LASSO (dash-dotted) does not seem to suffer from it at all,

in that its best test set performance is comparable to that of both regular-

ized models on the non-contaminated data. The prediction performance of
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Fig 1. Test MSE of the models along the regularized paths. See text for details.

the standard LASSO (dotted), on the other hand, deteriorates significantly

(t-test p-value 0.045) when contamination is added, illustrating the lack of

robustness of squared error loss.

The two LASSO solutions contain nine linear pieces each, while the Huber-

LASSO path for the non-contaminated data contains 41 pieces, and the one

for the contaminated data contains 39 pieces; both agree with our conjecture

in Section 3.2 that the number of steps is O(n). Figure 2 shows the solution

paths for the contaminated LASSO model and the contaminated Huber-

LASSO model. We observe that the two paths are quite different and the

two best models (corresponding to the solid vertical lines) are also different.

3.4. The Huberized squared hinge loss for classification. For classification

we would like to have a loss which is a function of the margin: r(y, βTx) =

(yβTx). This is true of all loss functions typically used for classification, like

the negative binomial log-likelihood for logistic regression, the hinge loss
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Fig 2. Solution paths of the LASSO (left) and the Huberized LASSO (right) on the
contaminated prostate cancer training data. The vertical grey lines correspond to
the steps along the solution paths. The vertical solid lines correspond to the models
that give the best performances on the test data.

for the support vector machine, and the exponential loss for boosting. The

properties we would like from our classification loss are:

• We would like it to be “almost quadratic”, so we can apply the Algo-

rithm 1 in section 3.1.

• We would like it to be robust, i.e., linear for large absolute value neg-

ative margins (like the logistic or hinge), so that outliers would have

a small effect on the fit.

This leads us to suggesting for classification the “Huberized squared hinge

loss”, i.e., (11) “Huberized” at t < 1:

l(y, βTx) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − t)2 + 2(1 − t)(t − yβTx) if yβTx ≤ t

(1 − yβTx)2 if t < yβTx ≤ 1

0 otherwise.

(15)
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It is a simple task to show that

argminfEyl(y, f) = 2 Pr(y = 1) − 1.

Hence the population minimizer of the Huberized squared hinge loss gives

the correct sign for classification.

To illustrate the robustness of this loss (15), and its computational su-

periority over the logistic loss, we considered the following simple example:

x ∈ R
2 with class centers at (−1,−1) (class “-1”) and (1, 1) (class “1”) with

one big outlier at (30, 100), belonging to the class “-1”. The Bayes model,

ignoring the outlier, is to classify to class “1” if and only if x1 + x2 > 0.

Figure 3 shows the regularized solution paths and misclassification rate

for this example using the logistic loss (left), the Huberized squared hinge

loss (middle) and the squared hinge loss (right), all with �1 penalty. We

observe that the logistic and Huberized regularized model paths are both

less affected by the outlier than the non-Huberized squared loss. However,

logistic loss does not allow for efficient calculation of the �1 regularized path.

4. Non-parametric Regression, Total Variation Penalties and

Piecewise Linearity. Total variation penalties and closely associated spline

methods for non-parametric regression have experienced a surge of interest

in the statistics literature in recent years. The total variation of a univariate

differentiable function f(x) is:

TVdif (f) =
∫ ∞

−∞
|f ′(x)|dx.

If f is non-differentiable on a countable set x1, x2, ..., then TV (f) is the

sum of TVdif (f), calculated over the differentiable set only and the absolute
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Fig 3. Regularized paths and prediction errors for the logistic loss (left), Huberized
squared hinge loss (middle) and squared hinge loss (right). The logistic loss and the
Huberized squared hinge loss are both less affected by the outlier.

“jumps” in f where it is non-continuous. In what follows we assume the

range of f is limited to [0, 1].

Total variation penalties tend to lead to regularized solutions which are

polynomial splines. [13] investigate the solutions to total-variation penalized

least squares problems. They use total variation of (k−1)th order derivatives:
n∑

i=1

(yi − f(xi))2 + λ · TV (f (k−1)). (16)

They show that there always exists a solution f̂k,λ such that f̂
(k−1)
k,λ is piece-

wise constant, i.e., f̂k,λ is a polynomial spline of order k. For k ∈ {1, 2} the

knots of the spline solutions are guaranteed to be at the data points.
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A similar setup is considered by [1]. Their taut-string and local squeezing

methods lead to solutions that are polynomial splines of degree 0 or 1, with

knots at data points.

Now, consider a polynomial spline f of order k, with h knots located at

0 < t1 < ... < th < 1, that is:

f(x) =
h∑

j=1

βj(x − tj)k−1
+ + q(x), (17)

where q(x) is a polynomial of degree (k − 1). The total variation of the

(k − 1)th derivative of f clearly corresponds to an �1 norm of the set of

coefficients of the appropriate spline basis functions, anchored at the knots:

TV (f (k−1)) = (k − 1)! ·
h∑

j=1

|βj |. (18)

If the knots t1, ..., th are fixed in advance (e.g., at the data points), then a

total variation penalized problem is equivalent to an �1-penalized regression

problem, with p = h derived predictors. If we also employ squared error loss,

we get a LASSO problem, and we can use the LAR-LASSO algorithm to

compute the complete regularized solution path. The only difference from

the standard LASSO is the existence of k non-penalized coefficients for the

polynomial q(x), instead of the intercept only for the LASSO. This requires

only a slight modification to the LAR-LASSO algorithm. This leads to essen-

tially the same algorithm as Algorithm 2 of [13] for finding the regularized

path for any k with a fixed, pre-determined set of candidate knots.

4.1. Locally adaptive regression splines. We now concentrate on the fam-

ily of penalized problems (16) defined by Mammen and van de Geer. As we

mentioned, [13] develop an exact method for finding f̂k,λ when k ∈ {1, 2}
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and approximate methods for k > 2 (where the knots of the optimal solu-

tions are not guaranteed to be at the data points). We now show how we

can use our approach to find the spline solution f̂k,λ exactly for any natural

k. The resulting algorithms get practically more complicated as k increases,

but their theoretical computational complexity remains fixed.

When the knots are not guaranteed to be at the data points, we can still

write the total variation of polynomial splines as the sum of �1 norms of

coefficients of basis functions, as in (18). However, we do not have a finite

pre-defined set of candidate basis functions. Rather, we are dealing with an

infinite set of candidate basis functions of the form:

X = {(x − t)k−1
+ : 0 ≤ t ≤ 1}.

Our algorithm for tracking the regularized solution path f̂k,λ in this case

proceeds as follows. We start at the solution for λ = ∞, which is the least

squares (k − 1)th degree polynomial fit to the data. Given a solution f̂k,λ0

for some value of λ0, which includes nλ0 knots at t1, ..., tnλ0
, denote:

z(x) =
(
1, x, x2, ..., xk−1, (x − t1)k−1

+ , ..., (x − tnλ0
)k−1
+

)T

,

which is the current predictor vector. Following (17) we can write:

f̂k,λ0(x) = β̂(λ0)Tz(x).

Following the logic of the LAR-LASSO algorithm, we see that the solution

will change as:

f̂k,λ0−d = (β̂(λ0) + dγ)Tz(x),

where γ = −(k−1)! · (ZTZ)−1 ·s, Z = (z(x1), ..., z(xn))T and s ∈ R
k+nλ0 is a

vector with 0 components corresponding to 1, x, ..., xk−1 and ±1 components
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corresponding to each (x − tj)k−1
+ (with the sign being the opposite of the

sign of (x − tj)k−1 T
+ (y − f̂k,λ0)). What we now need to identify is the value

of λ at which an additional knot needs to be added, and the location of

that knot. Consider first a fixed knot candidate t. Then we can see that the

LAR-LASSO criterion for adding this knot to the set of “active” knots is:

|xT
t (y − Zβ̂(λ0) − (λ0 − λ)Zγ)| = λ,

where xt = (x − t)k−1
+ (column vector of length n). More explicitly, define:

λ+(t) =
xT

t (y − Zβ̂(λ0) − λ0Zγ)
1 − xT

t Zγ
, (19)

λ−(t) =
xT

t (y − Zβ̂(λ0) − λ0Zγ)
−1 − xT

t Zγ
. (20)

Then we can write:

λ(t) =

⎧⎨
⎩

max(λ+(t), λ−(t)) if max(λ+(t), λ−(t)) ≤ λ0

min(λ+(t), λ−(t)) if max(λ+(t), λ−(t)) > λ0

. (21)

Now we see that we can in fact let t be a parameter and find the next

knot to be added to the optimal solution path by maximizing λ(t), that is:

λadd = max
t∈(0,1)\{t1,...,tnλ0

}
λ(t), (22)

which is the value of λ where we stop moving in direction γ, add a knot at

the argument of the maximum, and re-calculate the direction γ.

Solving (22) requires finding the local extrema of the functions in (21),

which are rational functions within each interval between two points which

are either data points or knots (with numerator and denominator both of

degree k − 1). Thus, a reasonable tactic is to find the extrema within each

such interval, then compare them between the intervals to find the overall
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solution to (22). For smaller values of k it can be solved manually and

exactly:

• For k ∈ {1, 2}, we get a ratio of constant or linear functions in (21),

and therefore the extrema – and the knots – are guaranteed to be at

the data points, leading to the algorithm of [13].

• For k = 3 we get a ratio of quadratics in (21), and we can find the

extrema within each segment analytically. These extrema may not

correspond to the segment’s end points, and so we may have knots

that are not at data points.

Assuming we have the code to solve the maximization problem in (22),

Algorithm 2 gives a general schema for following the solution path f̂k,λ for

any value of k.

Algorithm 2 Tracking the path of TV-penalized solutions

1. Initialize:

f(x) = (1, x, ..., xk−1)Tβls is the LS polynomial fit of degree k − 1

u = arg max
t∈(0,1)

|(x − t)k−1 T
+ (y − f(x))|(assumed unique)

T = {u}, λ0 = (k − 1)! · |(x − u)k−1 T
+ (y − f(x))|

Z = (1,x, ...,xk−1, (x − u)k−1
+ ), β̂(λ0) = (βT

ls, 0)T

s =
(
0T

k,−sgn{(x − u)k−1 T
+ (y − f(x))}

)T

2. While
∑

i(yi − f(xi))2 > 0

(a) Set γ = −(k − 1)!(ZTZ)−1s

(b) ∀t ∈ (0, 1) \ T define λ+(t), λ−(t), λ(t) as in (19, 20, 21)

(c) Solve the maximum problem in (22) to get λadd
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(d) Let λrem = λ0 − min{d > 0 : ∃j > k s.t. β̂j(λ0) + dγj = 0}

(e) If λadd > λrem add a knot at the point attaining the maximum in

(22), update T , Z and s.

(f) Similarly, if λadd < λrem remove the knot attaining 0 at λrem.

(g) In both cases, update:

β̂(λ0) ← β̂(λ0) + (λ0 − max(λadd, λrem))γ;

λ0 ← max(λadd, λrem).

Since we can never have more than (n − k) knots in a solution f̂k,λ [15],

the computational complexity of each iteration of the algorithm is bounded

at O(n2) calculations for finding the next knot and O(n2) for calculating

the next direction (using updating formulae). The number of steps of the

algorithm is difficult to bound, but from our experience seems to behave like

O(n) (which is the conjecture of [13]).

4.2. Simple data example: k = 3. We illustrate our algorithm on a simple

data example. We select 100 x samples uniformly on (0, 1). We draw the

corresponding y values as N(g(x), 0.032), where g(x) is a polynomial spline

with knots at 0.25, 0.5 and 0.75:

g(x) = 0.125 + 0.125x − x2 + 2(x − 0.25)2+ − 2(x − 0.5)2+ + 2(x − 0.75)2+.

g(x) is plotted as the solid line in Figure 4, and the noisy y values as circles.

The signal-to-noise ratio is about 1.4.

We apply our Algorithm 2 with k = 3. Figure 4 shows the resulting

models after 5, 15 and 50 iterations of the algorithm. After 5 iterations,

the regularized spline contains three knots like the true g, but these are all
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Fig 4. Applying Algorithm 2 (with k = 3) to a data example where the underlying
curve is a quadratic spline with knots at 0.25, 0.5 and 0.75. See text for details.

around 0.5. The fitted model, drawn as a dashed curve, is clearly underfitted.

The corresponding reducible squared prediction error is 9.5 × 10−4.

After 15 iterations, the spline contains four knots, at 0.225, 0.255, 0.485

and 0.755. The first one has a small coefficient, and the other three closely

correspond to the knots in g. The resulting fit (dotted curve) is a reasonable

approximation of g , and the reducible squared error is about 3.1 × 10−4.

After 50 iterations the model contains ten knots and the data is clearly

overfitted (dash-dotted curve, reducible squared error 8.2 × 10−4).

Although the algorithm should in principle continue until it interpolates

the data, in practice it terminates before (in this case after about 180 itera-
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tions) and is numerically unable to further improve the fit. This is analogous

to the situation described in [8] for kernel SVM, where the effective rank of

the kernel matrix is significantly smaller than n, since many eigenvalues are

effectively zero.

5. Using �1 Loss and Its Variants. Piecewise-linear non-differentiable

loss functions appear in practice in both regression and classification prob-

lems. For regression, absolute value loss variants like the quantile regression

loss are quite popular [11]. For classification, the hinge loss is of great im-

portance, as it is the loss underlying the support vector machine [20]. Here

we consider a generalized formulation, which covers both of (7) and (4). The

loss function has the form:

l(r) =

⎧⎨
⎩

b1 · |a + r| if a + r ≥ 0

b2 · |a + r| if a + r < 0
, (23)

with the generalized “residual” being r = (y − βTx) for regression and r =

(y · βTx) for classification.

When these loss functions are combined with �1 penalty (or total varia-

tion penalty, in appropriate function classes [12]) , the resulting regularized

problems can be formulated as linear programming problems. When the path

of regularized solutions β̂(λ) is considered, it turns out to have interesting

structure with regard to λ:

Proposition 3 For loss functions of the form (23), there exists a set of

values of the regularization parameter 0 < λ1 < . . . < λm = ∞ such that:

• The solution β̂(λk) is not uniquely defined, and the set of optimal

solutions for each λk is a straight line in R
p.



PIECEWISE LINEAR SOLUTION PATHS 25

• For any λ ∈ (λk, λk+1), the solution β̂(λ) is fixed and equal to the

minimum �1 norm solution for λk and the maximum �1 norm solution

for λk+1.

Proposition 3 generalizes observations on the path of solutions made in the

context of quantile regression in [12] and in the context of 1-norm support

vector machines in [21]. Note that this leads to describing a regularized path

which is piecewise constant as a function of the regularization parameter

λ, with jumps at the values λ1, ..., λm. However, it is still piecewise linear

in the �1 norm of the solution, ‖β̂(λ)‖1. The algorithm for computing the

solution path follows the spirit of our earlier work [21]. For brevity, we omit

the details. We note, however, that it is fundamentally different from the

LARS-LASSO algorithm and Algorithm 1, because we are now dealing with

a non-differentiable loss function.

An interesting variant of piecewise linear loss is to replace the �1 loss with

an �∞ loss, which is also piecewise linear and non-differentiable. It leads

to interesting “mini-max” estimation procedures, popular in many areas,

including engineering and control. For example, [19] propose the use of �1-

penalized �∞-loss solutions in an image reconstruction problem (but do not

consider the solution path). Path-following algorithms can be designed in

the same spirit as the �1 loss case.

6. Conclusion. In this paper we combine computational and statisti-

cal considerations in designing regularized modeling tools. We emphasize

the importance of both appropriate regularization and robust loss functions

for successful practical modeling of data. From a statistical perspective, we

can consider robustness and regularization as almost independent desirable
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properties dealing with different issues in predictive modeling:

• Robustness mainly protects us against wrong assumptions about our

error model. It does little or nothing to protect us against the uncer-

tainty about our model structure which is inherent in the finiteness of

our data. For example, if our errors really are normal, then squared

error loss minimizes the asymptotic variance of the coefficients, no

matter how little data we have or how inappropriate our model is [10].

Using a robust loss in such a situation is always counter productive.

• Regularization deals mainly with the uncertainty about our predictive

model structure by limiting the model space. Note, in this context,

the equivalence between the “penalized” formulation (1) and a “con-

strained” formulation minβ L(y, Xβ) subject to J(β) ≤ s. The two

formulations share the same solution path. The constrained formu-

lation exposes the goal of regularization as “simplifying” the model

estimation problem, by limiting the set of considered models.

There are many interesting directions in which our work can be extended.

We may ask, how can our geometric understanding of the regularized solu-

tion paths help us to analyze the statistical properties of the models along

the path? For example, [3] have offered analysis of the LASSO path. This

becomes much more challenging once we stray away from squared error loss.

We may also consider more complex penalty structure, such as local or data-

dependent penalties [1], or multiple penalties [18].

Finally, it is worth noting that limiting our discussion to convex problems,

for which efficient algorithms can be designed, leaves out some other statis-

tically well-motivated fitting approaches The use of non-convex penalty was
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advocated by Fan and collaborators in several papers [4, 5]. They expose

the favorable variable selection property of the penalty function they offer,

which can be viewed as an improvement over the use of �1 penalty. [16] ad-

vocate the use of non-convex ψ-loss in the classification setting, minimizing

the effect of outliers and misclassified points. Their approach can be viewed

as an even more robust version of our Huberized loss function, with strong

statistical motivation in terms of asymptotic behavior.
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