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Abstract

Issues of publication bias, lack of replicability and false discovery have long plagued the genetics

community. Proper utilization of public and shared data resources presents an opportunity to amelio-

rate these problems. We present an approach to public database management that we term Quality

Preserving Database (QPD). It enables perpetual use of the database for testing statistical hypotheses

while controlling false discovery and avoiding publication bias on the one hand, and maintaining testing

power on the other hand. We demonstrate it on a use case of a replication server for GWAS findings,

underlining its practical utility. We argue that a shift to using QPD in managing current and future

biological databases will significantly enhance the community’s ability to make efficient and statistically

sound use of the available data resources.

The prevalence and importance of public databases and shared data resources in the genetics and molecu-

lar biology community have been constantly increasing, and this trend is expected to continue and accelerate

with the growth in genetic data generation. For example, publicly available GWAS data sources like WTCCC

(Wellcome Trust Case Control Consortium, 2010) and dbGaP (Mailman et al., 2007) have had a major con-

tribution in genetic research well beyond the findings in the original studies which collected the data. An

important class of data sharing efforts is the formation of scientific consortia for collection and analysis of

genetic data, ranging in size from several collaborating scientists to entire research communities (Rich et al.,

2007). The coming years are expected to see the formation of multi-purpose public genetic databases of

unprecedented size and utility (Couzin-Frankel, 2012).
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In parallel to this increasing data availability and data-sharing trend, a growing concern in medicine,

genetics and other sciences surrounds the validity and replicability of scientific findings and scientific publi-

cations (Yong, 2012). One major issue is multiple comparisons and false discoveries. Fundamentally, when

numerous hypotheses are being tested in the same study (like 500,000 tests for SNP association in a typical

GWAS) or across many different studies, lack of proper and careful correction for multiple comparisons

practically guarantees false discoveries, publication bias and lack of replicability (Ioannidis, 2005).

In our view, shared or public data resources represent a tremendous opportunity to change the culture of

genetic research, and ensure statistical validity of scientific results, with minimal efforts. The key idea is one

we term Quality Preserving Database (QPD), whose main premise is that we want to make our shared data

resource available for unlimited and perpetual use for testing statistical hypotheses while remaining useful

(maintaining power) on the one hand, and ensuring statistical validity of findings across all tests performed

on the other hand. Within a QPD framework, the ability of future users to perform tests and make valid

discoveries is not negatively impacted by tests being performed now.

From first principles, a QPD is impossible without incurring some cost. In our scheme, usage of the

QPD for testing incurs a cost in the form of additional samples (or equivalently, cost of acquiring samples).

It is this resulting gradual growth of the number of samples which enables perpetual use while provably

controlling false discovery and maintaining testing power (Fig. 1, see Aharoni et al. (2011) and Methods for

technical details). Summed up in one sentence, a QPD is a database with a management layer that fairly

assigns costs in the form of additional data samples (or cost of acquiring them) for each test executed, and

controls some measure of false discovery across all tests performed.

A key radical feature in the QPD approach is that the scientists performing the tests are no longer

concerned with p values and are not directly responsible for controlling type-I errors — these aspects are

now the responsibility of the database manager. Rather, they are focused on what they wish or expect to

find: effect size and power. According to their specifications of these quantities, the database manager is able

to assign a cost to the test. The validity of the test (and hence the calculation of p value and determination of

thresholds) are the responsibility of the database manager and consequently, the cost of the test depends on

its “difficulty”: high power for low effect size would be much more expensive. Furthermore, a critical point in

our view is that the database manager does not need to examine the scientific merit of the hypotheses being

tested, because the QPD scheme guarantees future users will not be hampered by tests being performed

now. As long as the scientist is willing to shoulder the cost of the test (in samples or equivalent payment),

there is no harm in performing it. Consequently, a QPD management scheme does not require a scientific
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review of the tests being performed.

A relatively simple use case for QPD is as a replication server for GWAS findings. Common practice in

the genetics community calls for replication of any major scientific finding on a second independent dataset

before it is fully accepted (Lander and Kruglyak, 1995). A community of researchers of a specific disease

could thus establish a shared replication server, managed as a QPD. In fact, it may be pertinent for central

research authorities like the NIH to take responsibility for setting up such a replication server. Because it is

managed as a QPD, we can be confident of all replications successfully performed on it, while their cost is

kept minimal. As an illustration, we can compare three approaches for replicating GWAS findings:

1. Collect brand new data and attempt the replication on it, publish if successful (that is, if the result is

significant)

2. Obtain publicly available data, attempt the replication on it, publish if successful

3. Use a replication QPD, publish if successful

For simplicity of statistical exposition we assume here that replication involves a standard test of a normal

mean, although realistic tests used in replication (such as likelihood ratio tests for case-control data) would

behave similarly. For such a generic testing scenario (normal test, effect size 0.1, power 0.95), option 1

requires 1082 samples for a test at level 0.05. However, it is subject to publication bias and lacks false

discovery control across attempted replications by different researchers. Hence this approach to replication

is both expensive and unreliable. Option 2 requires no data collection, but in addition to possible data quality

and heterogeneity concerns, is subject to severe publication bias, assuming many different researchers are

attempting replications on this same data. Option 3 typically costs less than two samples or equivalent

payment (Fig. 2, see Methods for calculations description), and since it controls false discovery across all

tests performed on the QPD, the researcher is protected against publication bias even if only successful

replications are published. Furthermore, if the community or research authority takes it upon itself to

supply a steady stream of additional samples into the replication server, it could negate the need to charge

a payment for use, while maintaining false discovery control.

The typical required payment for QPD use is between zero and three samples per test performed (Fig. 2).

This “typical” cost depends on several factors, in particular the measure of false discovery being controlled.

Our first published QPD schema controls the family-wise error rate (FWER), the probability of making

even one false discovery (Aharoni et al., 2011). This very conservative measure results in relatively slowly

decreasing costs. It is widely appreciated in the genetics community that controlling less conservative
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measures of false discovery than FWER can lead to more valid discoveries. In particular, the false discovery

rate (FDR) is a popular measure. In FDR, the quantity being controlled is the expected portion of discoveries

that are not valid (compared to the probability of making even one false discovery in FWER). Unfortunately,

there are no known schemes for controlling FDR in a sequential scenario like QPD. However, a slightly

modified measure called mFDR can be controlled sequentially under some assumptions (Foster and Stine,

2008), and implemented within a QPD framework (Aharoni and Rosset, 2013). The intriguing consequence

is that when controlling mFDR, the cost of perpetual use of a QPD can become zero indefinitely, as long as

some ”good” tests (that is, truly novel tests with false nulls and good power) are regularly performed on it

(Fig. 2).

The QPD approach, while radical, integrates naturally with some emerging trends in public database

management, emphasizing privacy and cost considerations. It requires a management layer, which controls

access to the database, and a shift in how tests are defined and performed on such a database. While

researchers are currently engrained in the “p-value culture”, we believe the quantities the QPD requires

them to specify — effect size and power — are actually more natural for scientists than p values, as they

refer to the discoveries they hope to make (and are already implicitly involved in deciding which tests to

perform). Furthermore, if the researcher is unable to specify a desired effect size and power combination, the

database manager can specify different combinations and their prices. In the replication server example, the

researcher usually has an idea of the effect size hypothesized from the initial study, and choosing a power

for the test can then be thought of as a cost-benefit tradeoff — the more a researcher can pay, the higher

the power that can be guaranteed.

A critical aspect of the QPD scheme, which requires a cautionary note, is the assumption that additional

relevant samples can be provided by the QPD users, or acquired by the database manager. All samples,

including those currently in the database and those added to account for usage, are assumed to be of equal

quality and representative of a common distribution. Thus, aspects like data heterogeneity, population

structure and limited availability of samples (say, cases from a rare disease) should be carefully considered

when designing a QPD.

In our view, the benefits of using QPD — perpetual statistical validity and efficient use of data — far

outweigh the cultural and administrative challenges it presents to the community.
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Methods

This section is based on our published papers (Aharoni et al., 2011; Aharoni and Rosset, 2013) defining QPD

and its implementations controlling FWER and mFDR. We cite the relevant results from both papers, and

refer the reader to the papers themselves for more details and proofs.

Definitions

The usual setting of false discovery analysis assumes m null hypotheses, H1, H2,. . . ,Hm. Let Θj be the

parameter space assumed by the j’th test, and the null hypothesis Hj is defined as a subset Hj ⊂ Θj . A

random variable Rj ∈ {0, 1} indicates whether Hj was rejected, and R =
∑j=m
j=1 Rj counts the total number

of rejections. Similarly, Vj ∈ {0, 1} indicates the case that Hj is true and is rejected (i.e., type-I error), and

V =
∑j=m
j=1 Vj tracks the total number of type-I errors.

The two most commonly used measures of false discovery are the Family-Wise Error Rate (FWER) and

False Discovery Rate (FDR), defined as follows.

FWER ≡ P (V > 0)

FDR ≡ E(VR |R > 0)P (R > 0).
(1)

FWER is the probability of making one or more false discoveries, while FDR is the expected percentage of

false discoveries among the total number of discoveries.

In the search for a sequential procedure for controlling FDR, a modified measure has been employed,

mFDRη (Foster and Stine, 2008):

mFDRη ≡
E(V )

E(R) + η
, (2)

where η > 0 is some constant, typically chosen to be η = 1− α.

Control of mFDR requires assumption 1, which can be viewed as a weaker form of requiring independence

between tests.

Assumption 1

∀θ ∈ Hj : Pθ(Rj |Rj−1, Rj−2, . . . , R1) ≤ αj (3)

∀θ /∈ Hj : Pθ(Rj |Rj−1, Rj−2, . . . , R1) ≤ ρj , (4)

where θ is the combined true parameter values of all m tests, and Pθ(·) and Eθ(·) denote the probability
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distribution and expectation when assuming θ. We denote the level of the j’th test by αj, and ρj is the

maximal power, defined as follows:

ρj = supθj∈Θj−Hj
Pθj (Rj = 1). (5)

The Quality Preserving Database

A QPD (Aharoni et al., 2011) serves a series of test requests. Each request includes the following information:

The test statistic, assumptions on the distribution of the data (e.g. that it is normally distributed), the desired

effect size and power requirements. The request does not contain two details: the required significance level

and the number of samples which will be used to calculate the test statistic. These two details are managed

by the QPD’s manager. However, given all the other request details the significance level becomes a function

of the number of samples. We term this function the “level-sample” function, formally defined below.

Definition 2 Given a test request containing test statistic, data assumptions, and the desired effect size and

power requirements, the Level-sample function, L : N → R, is a function specifying the feasible significance

level given the number of samples.

The level-sample function summarizes the test request for the sake of determining the cost required for

executing it. The costs assigned for requests may vary between different requests, and also may vary with

time, but the allocation scheme must fulfill two properties, fairness and stability, defined formally next.

Definition 3 The costs assigned by the QPD satisfy the fairness requirement if for any two requests such

that one has level-sample function La(n) and the other Lb(n), and ∀n : La(n) < Lb(n), then at any particular

point in time the first request will be assigned with no higher cost than the second request.

Definition 4 The costs assigned by the QPD satisfy the stability requirement if for any particular request

a there is some constant ca such that the cost assigned to it will never exceed ca.

Now a QPD can be formally defined as follows.

Definition 5 A Quality Preserving Database (QPD) is a database with a management layer that assigns

costs in the form of additional data samples for each test executed. This layer fulfills the following three

properties: (a) It can serve an infinite series of requests, (b) It satisfies the fairness and stability requirements,

(c) It controls some measure of the overall type-I errors (e.g., FWER) at some pre-configured level α.
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In previous publications we have shown multiple ways to fulfil the above definition.

In Aharoni et al. (2011) we have shown a version we term here QPD-AS(α, q), that uses Alpha Spending

to control FWER. Let W (j) be the α-wealth remaining after the j‘th test, i.e., W (j) = W (j − 1) − αj .

W (0) is the initial α-wealth set by the QPD manager, which guarantees FWER ≤ W (0). In exchange for

a payment of cj new samples, the j’th user receives an αj allocation of:

αj = W (j − 1)(1− qcj ), (6)

where 0 < q < 1 is a parameter.

Theorem 6 (Aharoni et al., 2011) QPD-AS(α, q) fulfills the three properties of Definition 5, where stability

is only guaranteed for requests such that their level-sample function L : N→ R satisfies L(n) ≤ bqn for some

b. QPD-AS(α, q) always controls FWER at level α.

The requirement for level sample exponential decay decay is fulfilled by a wide range of commonly used

statistical tests, among them Neyman-Pearson tests, tests about the mean of a normal distribution with

known variance, and single-tail, uniformly most powerful tests with one unknown parameter (Aharoni et al.,

2011). Simulations show that many more types of tests are applicable in practice, e.g., tests based on an

approximately normal distribution such as a t-distribution.

In Aharoni and Rosset (2013) we present two additional variantsQPD-ASR(α, η, q) andQPD-ASR-OPT (α, η, q)

that use a novel approach we termed Alpha Investing with Rewards to control mFDR.

QPD-ASR(α, η, q) differs from QPD-AS(α, q) in the way the wealth W (0) is managed. It is initialized

with W (0) = αη, which is typically lower than α (e.g., when η = 1− α), but when a rejection occurs it gets

an additional wealth bonus amount of α.

In QPD-ASR-OPT (α, η, q), we split the α-wealth W (j) into two pools of wealth, W (j) = A(j) +B(j).

The first pool, A(j), is the same α-wealth that a QPD-AS(αη, q) would have. The bonus amounts of α

obtained by rejecting hypotheses are added to the second pool, B(j). The αj allocation is combined of two

allocations from the two pools. The amount withdrawn from the A(j) pool is the same as in the QPD-AS,

i.e., A(j − 1)(1 − qcj ). The B(j) pool, on the other hand, is managed more openhandedly, knowing it

will be refilled with α every time a rejection occurs. At each step we estimate the probability of this

happening based on prior history p(j) = 1
j−1

∑j−1
i=1 Rj , and withdraw the following amount for the j’th test:

min(p(j)α,B(j− 1)). Albeit somewhat heuristic, this management of the B(j) pool does have the following

property. If we may assume a real probability of rejection p, then the expected amount withdrawn at the
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j’th step from B(j) is E(min(p(j)α,B(j − 1))) ≤ E(p(j)α) = pα. The expected reward of the j’th test is

also pα. Therefore the B(j) pool is kept in a balanced manner. Note that the amounts withdrawn from it

are irrespective of cj , and therefore can be thought of as ’free of charge’. We show in Aharoni and Rosset

(2013) that in practical scenarios the costs of tests reduce to zero thanks to this management of the B(j)

pool.

The following equations formally define the level allocation of the j’th test in QPD-ASR-OPT (α, η, q).

p(j) = 1
j−1

∑j−1
i=1 Ri

αj = A(j − 1)(1− qcj b) + min(p(j)α,B(j − 1)).
(7)

The following theorem states both of these variants fulfil the QPD definition as well.

Theorem 7 (Aharoni and Rosset, 2013) Both QPD-ASR-OPT (α, η, q) and QPD-ASR(α, η, q) fulfill the

three properties of Definition 5, where stability is only guaranteed for requests such that their level-sample

function L : N → R satisfies L(n) ≤ bqn for some b, and type-I error control is satisfied by controlling

mFDR at level α given assumption 1.

Example: calculations in Figure 2 of our main text

This figure was created by assuming a series of tests of normal means with variance 1 on a database with a

starting size of 2000 samples, where each test is required to guarantee power of 0.95 at effect size 0.1. We

first considered a QPD-AS(0.05, 0.999) scheme, where the cost of each test in the sequence is deterministic

and does not depend on the outcome of previous tests or on the prevalence of false null hypotheses in the

tested sequence. Explicitly, the QPD-AS scheme determines the payment of user j by calculating the level

that should be allocated to the test:

αj = Φ(Z0.95 − 0.1
√
nj),

and then the number of samples this allocation requires as payment is the minimal value cj that gives:

Φ(Z0.95 − 0.1
√
nj−1 + cj) ≤W (j − 1)(1− 0.999cj ).

This is the solid line in the figure, and it guarantees FWER control at level 0.05 for the infinite sequence.

We further simulated QPD-ASR-OPT (0.05, 0.95, 0.999). Here the frequency of true discoveries matters,

and our streams of independent normal tests had probability 0.1 of being a false null (i.e., a potential true
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discovery). For the QPD-ASR-OPT implementation, the rewards of Alpha Spending with Rewards are

accumulated in the B(j) pool. When serving a new request, we first extract free of charge from B(j) at most

p(j)α, where p(j) is an estimate of the probability of rejection, gradually converging to 0.1. If this is not

enough to perform the test at the required power, a cost cj is computed to extract the remainder from the

second pool A(j) = W (j)−B(j), in the same manner as above. The dashed line in Figure 2 is the average

cost from averaging 50 such independent simulation streams. Starting from about the 50th test, the use was

free in all 50 simulations, as the B(j) pool was consistently non-empty and allowed assignment of sufficient

levels to all tests.
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Figure 1: Process of performing a single test on a public database managed as a QPD. If the DB manager uses
a QPD scheme in determining cost and performing the test, it guarantees overall control of false discovery
on all tests performed on the database.
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Figure 2: Average cost curves for running tests on normal means with power 0.95 at effect size 0.1 for a
database starting at 2000 samples. The cost of each test is the number of additional samples (or cost of
acquiring them) required as payments for running it. The full line represents costs when controlling FWER
and the broken line are expected costs when controlling mFDR with 10% of tests having true effect (that
is, each test is randomly assigned to be a false null with probability 0.1). The specific values depend on the
parameters of the problem but the important and general observations are that costs decrease with time,
and that controlling mFDR results in much lower costs, that can vanish if good hypotheses (i.e., false nulls)
are occasionally tested. See Methods for description of calculations.
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