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g Landé factor

H,,, applied magnetic field (vector)
Happ applied magnetic field (magnitude)
H,, molecular field

J exchange integral

J total angular momentum

ko propagation vector

/ orbital quantum number

l orbital momentum

L orbital momentum

<z Langevin function

m magnetic quantum number

my measured magnetic moment at 0 K
m magnetic moment

my orbital moment

m spin moment

m, projection of m along H,p,

M magnetization

M spontaneous magnetization

M; o magnetization at absolute saturation

n molecular field coefficient

N number of moments per unit volume

Np demagnetizing field coefficient

Nt total number of moments

S spin or spin angular momentum

T temperature

T. critical temperature

Tc Curie temperature

Tn Neéel temperature

Vot atom volume

X argument of the Langevin or Brillouin
function

z number of first neighbors

( magnetic susceptibility

U Bohr magneton

Heff effective moment

Uo permittivity of vacuum
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Introduction

Magnetic groups — also known as antisymmetry
groups, Shubnikov groups, Heesch groups, Opechow-
ski-Guccione (OG) groups, as well as dichromatic,
2-color, or simply black-and-white groups — are the
simplest extension to standard point group and space
group theory. They allow directly to describe, clas-
sify, and study the consequences of the symmetry of
crystals, characterized by having a certain property,
associated with each crystal site, that can take one of
two possible values. This is done by introducing a
single external operation of order two that inter-
changes the two possible values everywhere through-
out the crystal. This operation can be applied to the
crystal along with any of the standard point group
or space group operations, and is denoted by adding
a prime to the original operation. Thus, any rota-
tion g followed by this external operation is denoted
by &'

To start with, a few typical examples of this two-
valued property are given, some of which are illus-
trated in Figure 1. In the section “Magnetic point
groups” the notion of a magnetic point group is dis-
cussed, followed by a discussion on magnetic space
groups in the section “Magnetic space groups”. The
section “Extinctions in neutron diffraction of anti-
ferromagnetic crystals” describes one of the most
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Figure 1 Several realizations of the simple 1D magnetic space
group ppi. Note that the number of symmetry translations is
doubled if one introduces an operation €’ that interchanges the
two possible values of the property, associated with each crystal
site. Also note that spatial inversion 1 can be performed without a
prime on each crystal site, and with a prime (1’) between every
two sites. (a) An abstract representation of the two possible val-
ues as the two colors — black and white. The operation €’ is the
nontrivial permutation of the two colors. (b) A simple antifer-
romagnetic arrangement of spins. The operation €' is time
inversion which reverses the signs of the spins. (c) A ferromagne-
tic arrangement of two types of spins, where e’ exchanges them
as in the case of two colors. (d) A 1D version of salt. &' ex-
changes the chemical identities of the two atomic species. (e) A
function f(x) whose overall sign changes by application of the
operation €'.




220 Magnetic Point Groups and Space Groups

direct consequences of having magnetic symmetry in
crystals which is the extinction of magnetic Bragg
peaks in neutron diffraction patterns. A conclusion
is given in the section “Generalizations of magnetic
groups” by mentioning the generalization of magne-
tic groups to cases where the property associated
with each crystal site is not limited to having only
one of two possible values.

Consider first the structure of crystals of the
cesium chloride type. In these crystals the atoms
are located on the sites of a body-centered cubic
(b.c.c.) lattice. Atoms of one type are located on the
simple cubic lattice formed by the corners of the cu-
bic cells, and atoms of the other type are located on
the simple cubic lattice formed by the body centers of
the cubic cells. The parent b.c.c. lattice is partitioned
in this way into two identical sublattices, related by a
body-diagonal translation. One may describe the
symmetry of the cesium chloride structure as having
a simple cubic lattice of ordinary translations, with a
basis containing one cesium and one chlorine atom.
Alternatively, one may describe the symmetry of the
crystal as having twice as many translations, forming
a b.c.c. lattice, half of which are primed to indicate
that they are followed by the external operation that
exchanges the chemical identities of the two types of
atoms. A similar situation occurs in crystals whose
structure is of the sodium chloride type, in which a
simple cubic lattice is partitioned into two identical
face-centered cubic (f.c.c.) sublattices.

Another typical example is the orientational or-
dering of magnetic moments (spins), electric dipole
moments, or any other tensorial property associated
with each site in a crystal. Adopting the language of
spins, if these can take only one of two possible
orientations — “up” and “down” - as in simple an-
tiferromagnets, the same situation as above is seen,
with the two spin orientations replacing the two
chemical species of atoms. In the case of spins, the
external prime operation is a so-called antisymmetry
operation that reverses the signs of the spins. Phys-
ically, one may think of using the operation of time
inversion to reverse the directions of all the spins
without affecting anything else in the crystal.

Finally, consider a periodic or quasiperiodic scalar
function of space f{r), as in Figure 1le, whose average
value is zero. It might be possible to extend the point
group or the space group describing the symmetry of
the function f(r) by introducing an external prime
operation that changes the sign of f(7).

For the sake of clarity, the picture of up-and-down
spins, and the use of time inversion to exchange them
shall be adopted for the remaining of the discussion.
It should be emphasized, though, that most of what
is said here (except for the discussion of extinctions)

applies equally to all the other two-valued properties.
The magnetic crystal is described using a scalar spin
density field S(r) whose magnitude gives the magnit-
ude of an atomic magnetic moment, or some coarse-
grained value of the magnetic moment, at position 7
The sign of S(#) gives the direction of the spin — a
positive sign for up spins and a negative sign for
down spins. Thus, the function S(7) can be a discrete
set of delta functions defined on the crystal sites as in
Figure 1b, or a continuous spin density field as in
Figure 1e.

Magnetic Point Groups

A d-dimensional magnetic point group Gyp is a
subgroup of O(d) x 1, where O(d) is the group of
d-dimensional rotations, and 1’ is the time inversion
group containing the identity e and the time invers-
ion operation ¢'. Note that the term “rotation” is
used to refer to proper as well as improper rotations
such as mirrors.

Three cases exist: (1) all rotations in Gy appear
with and without time inversion; (2) half of the ro-
tations in Gy are followed by time inversion and the
other half are not; and (3) no rotation in Gy is fol-
lowed by time inversion. More formally, if G is any
subgroup of O(d), it can be used to form at most
three types of magnetic point groups, as follows:

1. Gm = G x 1. Thus, each rotation in G appears in
Gwm once by itself, and once followed by time
inversion. Note that in this case ¢ € Gyp.

2. Gy =H +¢gH, where G=H +gH, and g¢H.
Thus, exactly half of the rotations in G, which
belong to its subgroup H, appear in Gy by them-
selves, and the other half, belonging to the coset
gH, are followed by time inversion. Note that in
this case ¢’ ¢ Gy.

3. Gm = G. Thus, Gy contains rotations, none of
which are followed by time inversion.

Enumeration of magnetic point groups is thus
straightforward. Any ordinary point group G (i.e.,
any subgroup, usually finite, of O(d)) is trivially a
magnetic point group of type 3, and along with the
time inversion group gives another magnetic point
group of type 1, denoted as G1’. One then lists all
distinct subgroups H of index 2 in G, if there are any,
to construct additional magnetic point groups of type
2. These are denoted either by the group—subgroup
pair G(H), or by using the International (Hermann—
Mauguin) symbol for G and adding a prime to those
elements in the symbol that do not belong to
the subgroup H (and are therefore followed by time
inversion). The set of magnetic groups (here magnetic
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point groups Gys), formed in this way from a single
ordinary group (here an ordinary point group G),
is sometimes called the magnetic superfamily of the
group G. For example, the orthorhombic point group
G = mm2 = {e,my,,my,2;} has three subgroups of
index 2 (Hy = {e,my}, Hy = {e,my}, and H; =
{e,2,}), of which the first two are equivalent through
a relabeling of the x and y axes. This yields a total of
four magnetic point groups: mm2, mm21', m'm2’
(equivalently expressed as mm'2’), and m'm'2.
Magnetic point groups of type 3 are equivalent to
ordinary nonmagnetic point groups and are listed
here only for the sake of completeness. Strictly
speaking, they can be said to describe the symmetry
of ferromagnetic structures with no spin-orbit coup-
ling. Groups of this type are not considered here
any further. Magnetic point groups of type 2 can be
used to describe the point symmetry of finite objects,
as described in the next section, as well as that
of infinite crystals, as described in the section
“Magnetic point groups of crystals.” Magnetic point
groups of type 1 can be used to describe the point
symmetry of infinite crystals, but because they in-
clude ¢’ as a symmetry element they cannot be used
to describe the symmetry of finite objects, as is now

defined.

Magnetic Point Groups of Finite Objects

The magnetic symmetry of a finite object, such as a
molecule or a cluster containing an equal number of
two types of spins, can be described by a magnetic
point group. One can say that a primed or unprimed
rotation from O(d) x 1" is in the magnetic point
group Gy of a finite object in d dimensions, if it
leaves the object invariant. Clearly, only magnetic
point groups of type 2, listed above, can describe the
symmetry of finite magnetically ordered structures.
This is because time inversion ¢’ changes the orientat-
ions of all the spins, and therefore cannot leave
the object invariant unless it is accompanied by a
nontrivial rotation. It should be mentioned that in
this context, point groups of type 1 are sometimes
called “gray” groups, as they describe the symmetry
of “gray” objects which stay invariant under the
exchange of black and white.

Magnetic Point Groups of Crystals

The magnetic point group of a d-dimensional magne-
tically ordered “periodic crystal”, containing an
equal number of up and down spins, is defined as
the set of primed or unprimed rotations from O(d) x
1’ that leave the crystal “invariant to within a trans-
lation”. The magnetic point group of a crystal can be
either of the first or of the second type listed above. It

is of type 1 if time inversion by itself leaves the crys-
tal invariant to within a translation. Recall that in
this case, any rotation in the magnetic point group
can be performed either with or without time invers-
ion. If time inversion cannot be combined with a
translation to leave the crystal invariant, the magne-
tic point group is of type 2, in which case half the
rotations are performed without time inversion and
the other half with time inversion.

Figure 2a shows an example of a magnetically or-
dered crystal whose magnetic point group is of type 1.
This is a square crystal with magnetic point group
Gy = 4mm1’ where time inversion can be followed
by a translation to leave the crystal invariant. Figure 2b
shows an example of a crystal whose magnetic point
group is of type 2. This is a hexagonal crystal with
point group Gy = 6'mn. Note that all right-side-up
triangles contain a blue circle (spin up), and all
up-side-down triangles contain a green circle (spin
down). Time inversion, exchanging the two types of
spins, cannot be combined with a translation to
recover the original crystal. Time inversion must be
combined with an operation, such as the sixfold rota-
tion or the horizontal mirror that interchanges the
two types of triangles, to recover the original crystal.
Note that the vertical mirror (the first m in the
International symbol) leaves the crystal invariant
without requiring time inversion, and is therefore
unprimed in the symbol.

More generally, the magnetic point group of a d-
dimensional magnetically ordered “quasiperiodic
crystal (quasicrystal),” is defined as the set of primed
or unprimed rotations from O(d) x 1’ that leave
the crystal “indistinguishable.” This means that the
rotated and unrotated crystals contain the same spa-
tial distributions of finite clusters of spins of arbitrary
size. The two are statistically the same though not
necessarily identical. For the special case of perio-
dic crystals, the requirement of indistinguishability
reduces to the requirement of invariance to within a
translation.

Figure 3 shows two quasiperiodic examples, ana-
logous to the two periodic examples of Figure 2.
Figure 3a shows an octagonal crystal with magnetic
point group Gy;=8mm1’. One can see that time
inversion rearranges the spin clusters in the crystal,
but they all still appear in the crystal with the same
spatial distribution. This is because any finite spin
cluster and its time-reversed image appear in the
crystal with the same spatial distribution. Figure 3b
shows a decagonal crystal with magnetic point group
Gwm = 10'm'm. In this case, time inversion does not
leave the crystal indistinguishable. It must be com-
bined either with odd powers of the tenfold rotation,
or with mirrors of the vertical type.
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4mm1’ and magnetic space group p,4mm
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Figure 2 Periodic antiferromagnets. (a) A square crystal with magnetic point group Gy

(also denoted p,4mm), (b) A hexagonal crystal with magnetic point group Gy

and Kuo

8mm1’ and magnetic space

1990) Journal of Physics A: Mathematical and General 23: 5011. (b) A decagonal
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(1994) Philosophical Magazine Letters 69: 93.
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Magnetic Space Groups

The full symmetry of a magnetically ordered crystal,
described by a scalar spin density field S(), is given by
its magnetic space group %y;. It was mentioned earlier
that the magnetic point group Gy is the set of primed
or unprimed rotations that leave a periodic crystal
invariant to within a translation, or more generally,
leave a quasiperiodic crystal indistinguishable. One
still needs to specify the distinct sets of translations #,
or ty that can accompany the rotations g or ¢’ in a
periodic crystal to leave it invariant, or provide the
more general characterization of the nature of the
indistinguishability in the case of quasicrystals.

Periodic Crystals

As in the case of point groups, one can take any space
group % of a periodic crystal and form its magnetic
superfamily, consisting of one trivial group 9y = ¥,
one gray group %\ = %1’, and possibly nontrivial
magnetic groups of the form %y = # + (¢'|ty) A,
where # is a subgroup of index 2 of 4. Only the
latter, nontrivial groups are relevant as magnetic
space groups consisting of operations that leave the
magnetically ordered crystal “invariant.” These non-
trivial magnetic space groups are divided into two
types depending on their magnetic point groups Gy

1. Class-equivalent magnetic space groups. The
magnetic point group Gy is of type 1, and there-
fore all rotations in G appear with and without
time inversion. In this case the point groups of ¥
and # are the same, but the Bravais lattice of #
contains exactly half of the translations that are in
the Bravais lattice of 4.

2. Translation-equivalent magnetic space groups.
The magnetic point group Gy is of type 2. Here
the Bravais lattices of 4 and J# are the same, but
the point group H of # is a subgroup of index 2
of the point group G of 4.

Enumeration of translation-equivalent magnetic
space group types is very simple. Given a space group
%4, all that one needs to do is to consider all
subgroups H of index 2 of the point group G of ¥,
as explained earlier. The only additional considera-
tion is that with an underlying Bravais lattice, there
may be more than one way to orient the subgroup H
relative to the lattice. For example, consider the
magnetic point group #7'm2’ which, as noted earlier,
is equivalent to mm'2’. If the lattice is an A-centered
orthorhombic lattice, then the x- and y-axes are no
longer equivalent, and one needs to consider both
options as distinct groups. It can be said that Ami'm2’
and Amm'2’ belong to the same “magnetic geometric

crystal class” (i.e., have the same magnetic point
group), but to two distinct “magnetic arithmetic crys-
tal classes.” Translation-equivalent magnetic space
groups are denoted by taking the International sym-
bol for %, and adding a prime to those elements in the
symbol that do not belong to # and are therefore
followed by time inversion.

Enumeration of class-equivalent magnetic space
group types can proceed in two alternative ways.
Given a space group %, one may consider all distinct
sublattices of index 2 of the Bravais lattice of %.
Alternatively, given a space group ', one may con-
sider all distinct superlattices of index 2 of the
Bravais lattice of #. It is also to be noted that if one
prefers to look at the reciprocal lattices in Fourier
space, instead of the lattices of real-space transla-
tions, the roles of superlattice and sublattice are
exchanged. Although the lattice of 4 contains twice
as many points as the lattice of #, the reciprocal
lattice of % contains exactly half of the points of the
reciprocal lattice of .

Because of the different enumeration methods,
there are conflicting notations in the literature for
class-equivalent magnetic space groups. The OG no-
tation follows the first approach (sublattices of %),
taking the International symbol for the space group
% with a subscript on the Bravais class symbol deno-
ting the Bravais lattice of 2. The Belov notation
follows the second approach (superlattices of #),
taking the International symbol for the space group
A with a subscript on the Bravais class symbol
denoting one or more of the primed translations ¢, in
the coset (¢'|t,)#°. The Lifshitz notation, which fol-
lows a third approach (sublattices of # in Fourier
space), resembles that of Belov but generalizes more
easily to quasiperiodic crystals.

There is an additional discrepancy in the different
notations which has been the cause of some confu-
sion over the years. It is due to the fact that when
¢ € Gy, ordinary mirrors or rotations when un-
primed may become glide planes or screw axes when
primed, and vice versa. The only consistent way to
avoid this confusion is to use only unprimed elements
for the symbols of class-equivalent magnetic space
group types. This is the approach adopted by both
the Belov and the Lifshitz notations, but unfortu-
nately not by the OG notation, having introduced
errors into their list of magnetic space group types. In
any case, there is no need to leave the 1’ at the end of
the symbol, as it is clear from the existence of a sub-
script on the lattice symbol that the magnetic point
group Gy contains €.

Consider, for example, all the class-equivalent
magnetic space group types with point group 432.
In the cubic system there are two lattice—sublattice
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pairs: (1) The simple cubic lattice P has a face-cen-
tered sublattice F of index 2, and (2) The b.c.c. lattice
I has a simple cubic sublattice P of index 2. Recall
that the reciprocal of F is a b.c.c. lattice in Fourier
space, denoted by I*, and the reciprocal of I is an
f.c.c. lattice, denoted by F*. In the Belov notation one
has F432, F4;32, Pj432, and P;4;32 withj = 1,2, 3.
The subscript s is for “simple”. In the Lifshitz nota-
tion, using Fourier space lattices, these groups be-
come [3432, I34;32, Pr.432, and Pr.-4,32. In the OG
notation these groups should become Pr432, P¢4,32,
1p432, and Ip4,32. Instead, they list Pr432, Pr4,32,
1p432, Ip4132, Ip4'32', and Ip4)32’, using primes
inconsistently and clearly missing two groups. It
is therefore recommended that one refrains from
using primes when denoting class-equivalent magne-
tic space groups.

The reader is referred to the “Further reading”
section for complete lists of magnetic space group
types. However, some statistics are summarized.
Starting from the 17 space group types in two dimen-
sions, also known as the 17 plane groups, one can
form a total of 80 magnetic space group types as
follows: 17 trivial groups, 17 gray groups, and 46
nontrivial groups of which 18 are class-equivalent
and 28 are translation equivalent. Starting from the
230 space group types in three dimensions, one can
form a total of 1651 magnetic space group types as
follows: 230 trivial groups, 230 gray groups, and
1191 nontrivial groups of which 517 are class-
equivalent and 674 are translation equivalent. These
numbers have no particular significance other than
the fact that they are surprisingly large.

Quasiperiodic Crystals

Lattices and Bravais classes Magnetically-ordered
quasiperiodic crystals, in general, possess no lattices
of real space translations that leave them invariant,
but they do have reciprocal lattices (or Fourier mod-
ules) L that can be inferred directly from their neu-
tron diffraction diagrams. To be a bit more specific,
consider spin density fields with well-defined Fourier
transforms

S(r) = _S(kje*” 1]

kel

in which the set L contains, at most, a countable
infinity of plane waves. In fact, the “reciprocal lat-
tice” L of a magnetic crystal can be defined as the set
of all integral linear combinations of wave vectors k
determined from its neutron diffraction diagram, as
one expects to see a magnetic Bragg peak at every
linear combination of observed peaks, unless it is
forbidden by symmetry, as explained in the next
section. The “rank” D of L is the smallest number of

vectors needed to generate L by integral linear com-
binations. If D is finite the crystal is quasiperiodic. If,
in particular, D is equal to the number d of spatial
dimensions, and L extends in all d directions, the
crystal is periodic. In this special case, the magnetic
lattice L is reciprocal to a lattice of translations in real
space that leave the magnetic crystal invariant. The
reciprocal lattices L of magnetic crystals are classified
into Bravais classes, just like those of ordinary non-
magnetic crystals.

Phase functions and space group types The precise
mathematical statement of indistinguishability, used
earlier to define the magnetic point group, is the
requirement that any symmetry operation of the
magnetic crystal leaves invariant all spatially aver-
aged nth-order autocorrelation functions of its spin-
density field,

C<”>(r1,...,rn

)
li ! drS S 2
= Jim & [ drS(ra =) S -n) 2

One can prove that two quasiperiodic spin density
fields S(r) and S(r) are indistinguishable in this way,
if their Fourier coefficients, defined in eqn [1], are
related by

S(k) = Mg (k) 3]

where y is a real-valued linear function (modulo
integers) on L, called a “gauge function”. By this it is
meant that for every pair of wave vectors k; and k; in
the magnetic lattice L,

1Ry + ko) = y(k1) + 2(k2) (4]

where “=” means equal to within adding an integer.
Thus, for each element g or g’ in the magnetic point
group Gy, of the crystal, that by definition leaves the
crystal indistinguishable, there exists such a gauge
function ®4(k) or ®g(k), called a “phase function”,
satisfying
ezniq)g(k)s(k)7 2eGu
S(gk) = { 21i® (k)
—e W S(k), geGum
Since for any g,he G, S([ghlk) = S(g[hk]), the cor-
responding phase functions for elements in Gy,
whether primed or not, must satisfy the “group com-
patibility condition”,

Dy (k) = Oy (k) + Dy (k) (6]

[5]

where the asterisk and the dagger denote optional
primes. A “magnetic space group,” describing the
symmetry of a magnetic crystal, whether periodic or
aperiodic, is thus given by a lattice L, a magnetic
point group Gy, and a set of phase functions ®4(k)
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and @y (k), satisfying the group compatibility condi-
tion [6].

Magnetic space groups are classified in this for-
malism into magnetic space group types by organ-
izing sets of phase functions satisfying the group
compatibility condition [6] into equivalence classes.
Two such sets, ® and @, are equivalent if: (1) they
describe indistinguishable spin density fields related
as in [3] by a gauge function y; or (2) they correspond
to alternative descriptions of the same crystal that
differ by their choices of absolute length scales and
spatial orientations. In case (1), ® and ® are related
by a “gauge transformation,”

Gy (k) = Dy (k) + 1(gk — k) [7]

where, again, the asterisk denotes an optional prime.

In the special case that the crystal is periodic
(D = d), it is possible to replace each gauge function
by a corresponding d-dimensional translation ¢, sat-
isfying 2ny(k) = k - #, thereby reducing the require-
ment of indistinguishability to that of invariance to
within a translation. Only then does the point group
condition [5] become

S(r —tg),
—S(r—ty), geGm

gEGM

S(gr) = 8]

the gauge transformation [7] becomes a mere shift of
the origin, and the whole description reduces to that
given in the section “Periodic crystals.” The reader is

referred to references in the “Further reading” section
for details regarding the enumeration of magnetic
space groups of quasiperiodic crystals and for com-
plete lists of such groups.

Extinctions in Neutron Diffraction of
Anti-Ferromagnetic Crystals

It was said earlier that every wave vector k in the
lattice L of a magnetic crystal is a candidate for a
diffraction peak unless symmetry forbids it. One can
now understand exactly how this happens. Given
a wave vector kel, all magnetic point-group opera-
tions g or ¢ for which gk = k are examined. For
such elements, the point-group condition [5] can be
rewritten as

S(k) = %K S(k),  geGy 9]
= _eznicbg,(k)s(k)7 geGy

requiring S(k) to vanish unless ®,(k) =0, or
®y (k) =1/2, or unless both conditions are satisfied
when both g and g’ are in Gy, It should be noted that
the phase values in eqn [9], determining the extinc-
tion of S(k), are independent of the choice of gauge
[7], and are therefore uniquely determined by the
magnetic space-group type of the crystal.
Particularly striking are the extinctions when the
magnetic point group is of type 1, containing time
inversion ¢'. The relation (¢/)” = e implies — through
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Figure 4 Extinctions of magnetic Bragg peaks in crystals with magnetic point groups of type 1, containing time inversion e’. Both
figures show the positions of expected magnetic Bragg peaks indexed by integers ranging from —4 to 4. Filled circles indicate observed
peaks and open circles indicate positions of extinct peaks. The origin and the D vectors used to generate the patterns are indicated by an
additional large circle. (a) corresponds to the square crystal in Figure 2a with magnetic space group p,4mm, and (b) corresponds to the

octagonal crystal in Figure 3a with magnetic space group p,8mm.
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the group compatibility condition [6] and the fact
that ®,(k) =0 - that ®, (k) =0 or 1/2. It then fol-
lows from the linearity of the phase function that on
exactly half of the wave vectors in L @, (k) =1/2,
and on the remaining half, which form a sublattice
Lo of index 2 in L, ®,(k) =0. Thus, in magnetic
crystals with magnetic point groups of type 1 at least
half of the diffraction peaks are missing. Figure 4
shows the positions of the expected magnetic Bragg
peaks corresponding to the square and octagonal
magnetic structures shown in Figures 2a and 3a,
illustrating this phenomenon.

Generalizations of Magnetic Groups

There are two natural generalizations of magnetic
groups. One is to color groups with more than two
colors, and the other is to spin groups where the
spins are viewed as classical axial vectors free to
rotate continuously in any direction.

An n-color point group G¢ is a subgroup of
O(d) x S,, where S,, is the permutation group of »
colors. Elements of the color point group are pairs
(g,7) where g is a d-dimensional (proper or improp-
er) rotation and y is a permutation of the 7 colors. As
before, for (g,7) to be in the color point group of a
finite object it must leave it invariant, and for (g, 7) to
be in the color point group of a crystal it must leave it
indistinguishable, which in the special case of a
periodic crystal reduces to invariance to within a
translation. To each element (g, 7)€ G¢ corresponds
a phase function @} (k), satisfying a generalized vers-
ion of the group compatibility condition [6]. The
color point group contains an important subgroup of
elements of the form (e,y) containing all the color
permutations that leave the crystal indistinguishable
without requiring any rotation g.

A spin point group Gg is a subgroup of O(d)x
SO(ds) x 1/, where SO(d;) is the group of d,-dimen-
sional proper rotations operating on the spins, and 1’
is the time inversion group as before. Note that the
dimension of the spins need not be equal to the di-
mension of space (e.g., one may consider a planar
arrangement of 3D spins). Also note that because the
spins are axial vectors there is no loss of generality by
restricting their rotations to being proper. Elements
of the spin point group are pairs (g,7), where g is a
d-dimensional (proper or improper) rotation and y
is a spin-space rotation possibly followed by time

inversion. Here as well, elements of the form (e,?7)
play a central role in the theory, especially in deter-
mining the symmetry constraints imposed by the
corresponding phase functions @ (k) on the patterns
of magnetic Bragg peaks, observed in elastic neutron
diffraction experiments.
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