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ABSTRACT

We describe, using the example of the one non—trivial rank—4 orthorhombic Bravais
class, a procedure to determine the low-rank space groups that can arise from a
given high-rank space group through a continuous phase transition.

Consider a continuous structural phase transition whose only effect in Fourier
space 1is a slight distortion of the lattice of wave vectors that lowers its rank, possibly
with a reduction of its point group. Suppose we know the space group describing
the crystal in its high-rank phase. What are the possible space groups describing
the crystal in its low-rank phase? We illustrate here how this question is answered
in the language of Fourier space crystallography.*

When the rank is lowered, two issues arise that are not relevant to rank-
preserving transitions. (1) Lowering the rank introduces new linear relations among
formerly independent wave vectors. This imposes new constraints on the linear
phase functions that describe the point group symmetry of the material. If a phase
function fails to satisfy these constraints the associated point group element is lost
and the symmetry of the material is reduced. (2) Lowering the rank reduces the
gauge freedom existing in the high-rank phase, making it possible to distinguish
low-rank structures that are indistinguishable in the high-rank phase. As a result a
single high-rank space group may give rise to more than one low-rank space group.

We illustrate this with the rank-4 orthorhombic space groups with point group
mmm in the O Bravais class.! Lattices in this class contain wave vectors of the
form

k =ha+kb+lc; +mcy, h+1and k+ m even, (1)

where a, b, and ¢; are mutually orthogonal wave vectors and ¢; = ~vyeg with ~
irrational. We examine the continuous phase transition in which v becomes the
ratio of two relatively prime integers, ny/ns.

* The relevant terms and concepts of Fourier-space crystallography are summarized in the Appendix.

f This is one of the two non-trivial rank-4 Bravais classes enumerated in Ref. 1. It also appears in a
separate paper in this volume on the description of composite crystals.
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Tablel. Primitive generating vectors for the rank-4 O-lattice and rank-3 F*-lattice are given at the top
in terms of the vectors in Eqgs. (1) and (2). Their linear relations when v=n;/no=(20+1)/(2j+1) are
given at the bottom. In between are listed the space groups with point group mmm and mm2 in the form
®4(b;)=616020504 on the O-lattice and in the form ¢ ,(B;)=6:62605 on the '*-lattice, taken from Refs. 3
and 4. For the mm2 space groups disregard the phase function associated with m.. The rank-3 space group
numbers follow the International Tables.

Step 1 — Find the possible low-rank Bravais classes.

Let ¢; = nic and ¢3 = nyc so that (1) becomes
k = ha+ kb + (n1l+nem)c, h+1and k+ m even. (2)

Depending on the parities of ny and ny the possible Bravais classes of the rank-3
reciprocal lattice are: (1) base-centered orthorhombic, in an A setting when n; is
even and ns is odd, and in a B setting when ny is odd and ny is even; (2) face-
centered orthorhombic, F* (body centered in real space), when ny and ny are both
odd. We illustrate the next steps in the case where the low-rank lattice is F'*, taking
ny =20+ 1 and ny =25 + 1.

Step 2 — Express the vectors in the low-rank lattice that correspond to the high-rank
primitive lattice generating vectors in terms of primitive generating vectors of the
low-rank lattice.

These relations are of the form
d
bi:ZBjmjia 1=1...D >d. (3)
=1

Their explicit form in the case of the O to F* transition is given in in Table 1.

Step 8 — Resolve the high-rank gauge-equivalence class into low-rank gauge-equiva-
lence classes.



A general high-rank gauge transformation on a set of phases specifying the high-
rank space group parametrizes the entire high-rank gauge-equivalence class by D
numbers — the values y(b;) of the linear gauge function on the primitive generators
of the high-rank lattice. We can single out a unique representative of each low-
rank gauge-equivalence class by choosing a particular low-rank gauge that fixes d
of these D independent parameters. This insures that the sets of low-rank phase
functions specified by the remaining D — d parameters will not be gauge-equivalent
and therefore will describe distinguishable structures. The low-rank phase functions
arrived at in this way will be given in a particular gauge. They can be identified
with the sets of tabulated phases used to specify the low-rank space groups by
comparing gauge invariant linear combinations.

In our example we can make a low-rank gauge transformation (determined by
inverting the first three columns of the mj; matrix in Table 1) that sets y(b;) to 0,
i = 1,2,3, leaving only a single parameter xo = x(ba).

With this choice of low-rank gauge the general form for each rank-4 phase
function given in Table 1 reduces to:

P, (bi) =006:1601; Py (bi) = 0262(—x0)(—x0);  Pm.(bi) =00 x0(—x0); (4)

where 6, and 83 are gauge-invariant phases equal to 0 or % given by identifying (4)
with the entries in the Table when yo = 0. By using this more general form we
obtain all the possible rank-3 space groups.

Step 4 — Find phases describing low-rank space groups that agree with the phases
for the high-rank space group as expressed in the general form of Step 8.

We look for the largest subgroup of the high-rank point group contained in
the point group of the low-rank lattice, whose elements g can be assigned phases
®,(B;) at the generators of the low-rank lattice agreeing with one of the forms of
the high-rank phases:

(I)g(bi)

®y(Bj)mji (5)

d
=1

J

The phases ®,4(B;) must differ at most by a low-rank gauge transformation from
a set describing a known space group. Such a subgroup can be a point group for
the low-rank structure and the phases ®,(B;) specify the corresponding low-rank
space group.

Table 1 lists the phases associated with the F*-lattice that specify the space
groups associated with point groups mmm and mm?2. With the left side of (5) taken
to be each of the 12 high rank phases in (4) we seek to satisfy (5) with low-rank
phases from Table 1, or with phases that are low-rank gauge-equivalent to the ones
in Table 1. The problem of choosing the correct low-rank gauge is solved by noting
that there are 6 gauge-invariant linear combinations of low-rank phases:* ®,, (By),

"
* They are gauge invariant because B; and Bo—Bgj lie in the invariant plane of 172.
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Table2. The rank-3 space groups that can arise from each of the rank-4 orthorhombic space groups on the
O-Bravais class specified in Table 1, when e¢;=(n1/n2)ce with n; and no both odd integers. The space
groups with ni;+no odd are given by replacing the I symbol by an A if n; is even and then transforming
into a B setting if no 1s even.

®,,,. (B2 — B3) and the two other pairs derived from these by cyclic permutations
of a,b,c and 1,2,3. (Table 1 shows that the members of each pair are either both
0 or both 1/2, so the six gauge invariant phases are entirely specified by three
independent numbers.) These leave three linearly independent phases (®,,, (B2)
and its cyclic permutations) which can be assigned arbitrary values by the three
degrees of low-rank gauge freedom.

When we remove from the 12 equations (5) those that merely specify the val-
ues of the gauge dependent phases and those that are not linearly independent
of the others, we arrive at the four relations to the left of the arrow in (6). The
first two contain gauge-invariant phases and there is a single gauge-invariant linear
combination of the last two, resulting in the three conditions to the right of the
arrow.
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The three independent gauge-invariant low-rank phases appearing on the right
side of (6) uniquely determine the low-rank space group. When ny xo # O,% the m.
mirror is removed from the low-rank point group and the new point group is mm2.
The resulting space groups are summarized in Table 2. A similar application of the
procedure yields the rank-3 space groups in the cases where ny 4+ ngy is odd. They
are obtained from Table 2 by replacing the symbol I by A if n; is even and then
transforming to a B setting if ny is even.

Appendix — Fourier-Space Crystallography?

A crystal is any solid having a discrete diffraction diagram. The (reciprocal)
lattice L (the Fourier module) is the set of all integral linear combinations of wave
vectors in the diffraction diagram. Its rank D is the smallest number of wave vectors
needed to generate it. Two lattices of wave-vectors are in the same Bravais class
if one can interpolate between them with a sequence of lattices, all with the same
point group and rank.



Two densities p and p’ are indistinguishable if they have the same distribution
of substructures on any scale, or equivalently,* if their density Fourier coefficients
are related by

(k) = 7x09 (1) (A1)

where y, called a gauge function is linear modulo an integer over the lattice of wave
vectors. The function y is completely specified by its independent values on a set
of D wave vectors which primitively generate the lattice.

The point group G of a crystal is the set of all operations from O(3) that
leave the density indistinguishable. Associated with every point group element g
is a gauge function ®,(k) (a phase function), giving the relation between density
Fourier coefficients at symmetry related points:

plgk) = 2™ p(k) . (A.2)

The symmetry class of a crystal is specified by its point group along with a set of
phase functions.

Two indistinguishable densities must have the same space group. Their phase
functions are related by a gauge transformation:

3)(k) = @, (k) + (g — 1]K) . (A3)

and are called gauge-equivalent. The space group of a crystal is specified by a class
of gauge-equivalent phase functions.

Phase functions must satisfy the group compatibility condition:
Vg,.h € G : S, (k) = 0, (Rk) + @p(k), (A.4)

which enables one to specify the space group by giving only the values of the phase
functions associated with the generators of the point group at a set of lattice—
generating vectors.
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* Tor a proof of this see page 7 of Ref. 3.



