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Abstract

Recently, Coté et al. [10] proposed an approach for
solving the k-server problem on Hierchically Separated
Trees (HSTs). In particular, they define a problem on
a uniform metric, and show that if an algorithm with a
certain refined guarantee exists for it, then one can ob-
tain polylogarithmic (in diameter) competitive factors
for the k-server problem on HSTs by solving this prob-
lem recursively. By designing such an algorithm for a
two point metric, they obtained a logarithmic competi-
tive algorithm for well-separated binary HSTs. Extend-
ing their result to uniform metrics on arbitrarily many
points would imply a poly-logarithmic competitive algo-
rithm for k-server on general HSTs (and hence general
metrics) and is thus of major interest.

Here, we design such an algorithm for any uniform
metric, provided the instance satisfies a certain “con-
vexity” property. Even though this does not give a re-
sult for k-server, convexity seems to be a very natural
property, and we give evidence that instances arising
in the Coté et al. [10] reduction from k-server essen-
tially possess this property, suggesting that this might
be a promising approach. Already, our setting is general
enough to model the finely competitive paging problem
proposed by Blum et al. [4], who motivated it as a first
step towards achieving a polylog(k) competitive algo-
rithm for k-server. Our result implies an r + O(log k)-
competitive algorithm for finely competitive paging, re-
solving the main open problem of [4].

Our results are based on an extension of the primal-
dual framework for online algorithms developed by
Buchbinder and Naor [7]. The original approach works
for problems whose offline version can be expressed as
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a packing or a covering linear program, possibly with
box constraints. The online nature of the problem is
modeled by revealing the constraints one by one and
the requirement that variables can only be increased
over time.

Here, we consider more general types of constraints,
where terms can be both positive and negative. More-
over, we allow the variables to both increase and de-
crease. This versatility allows us to model problems
such as predicting with expert advice, which could not
be modeled earlier. To show the simplicity and gen-
erality of this approach, we give an alternate O(log k)-
competitive algorithm for weighted paging with a very
simple proof. We also give an alternate primal-dual ap-
proach to design regret minimization algorithms for the
problem of online prediction with expert advice. Our
results suggest the possibility of a more general primal-
dual framework for online problems beyond covering
and packing LPs.

1 Introduction

The k-server problem is one of the most central and
well studied problems in competitive analysis and is
considered by many to be the “holy grail” problem in
the field. In the k-server problem, there is a distance
function d defined over an n-point metric space and k
servers located at the points of the metric space. At
each time step, an online algorithm is given a request
at one of the points of the metric space, and it is served
by moving a server to the requested point. The cost is
defined to be the distance traveled by the server. Thus,
the goal of an online algorithm is to minimize the total
sum of the distances traveled by the servers so as to
serve a given sequence of requests. The k-server problem
can model many problems, and one of the most widely
studied problems is paging. In this problem there is a
cache that can hold up to k pages out of a universe of
n pages. At each time step a page is requested; if the
page is already in the cache then no cost is incurred,
otherwise it must be brought into the cache (possibly
evicting some other page) at a cost of one unit. Paging
is the special case of k-server on a uniform metric. In



their seminal paper on competitive analysis, Sleator and
Tarjan [19] gave k-competitive algorithms for paging,
and also showed that this is the best possible for any
deterministic algorithm.

The k-server problem in its full generality was first
posed by Manasse et al. [16]. They conjectured that
there is a k-competitive online algorithm in any metric
space and for any value of k. This is called the k-
server conjecture. Fiat et al. [12] were the first to prove
that there exists an online algorithm for any metric
space with competitive ratio which depends only on k.
Following a sequence of results, a major breakthrough
was achieved by Koutsoupias and Papadimitriou [15]
who showed that the work function algorithm is 2k − 1
competitive. We note that for special metrics such
as the uniform metric, lines, and more generally trees
[9], a competitive factor of k is known for the k-server
problem.

The competitive ratio for k-server seems to substan-
tially improve if randomization is allowed. For exam-
ple, Fiat et al. [13] gave a randomized 2Hk-competitive
algorithm for paging, where Hk is the k-th Harmonic
number. They also showed that any randomized al-
gorithm is at least Hk-competitive. In fact, no bet-
ter lower bound is known for any other metric space.
The randomized k-server conjecture states that there is
an O(log k)-competitive randomized algorithm for the
k-server problem in an arbitrary metric space against
an oblivious adversary. However, despite much inter-
est, the randomized case remains poorly understood
and o(k) upper bounds are known for very few special
cases. In addition to paging, poly-logarithmic compet-
itive algorithms are known only for general metrics on
n = k+O(polylogk) points (via results for Metrical Task
Systems), for certain well-separated spaces [17], and for
weighted paging [2]. Even for the seemingly simple case
of n uniformly spaced points on a line, the best known
result is an O(n2/3)-competitive algorithm [11], which
is o(k)-competitive only for n = o(k3/2). Given our
current lack of understanding, a major breakthrough
would be to even resolve a weaker variant of the random-
ized k-server conjecture – obtaining a polylog(k, n, ∆)-
competitive algorithm for general metrics, where ∆ is
the diameter. Since a general metric space can be em-
bedded into a probability distribution over Hierarchi-
cally Separated Trees (HSTs) with logarithmic distor-
tion of the distances, it suffices to consider the k-server
problem on HSTs to obtain the latter bound.

Very recently, Coté et al. [10] proposed an approach
for obtaining non-trivial results for HSTs. They defined
a problem on uniform metrics, which we call the Allo-
cation problem, and showed that an algorithm with a
guarantee of a certain refined form for it could be used

as a building block to recursively solve the k-server prob-
lem on an HST. Coté et al. [10] were able to solve the
Allocation problem of a metric space with two points,
allowing them to obtain an O(log ∆)-competitive algo-
rithm for well separated binary HSTs. Given the rel-
ative simplicity of uniform metrics, such an approach
seems quite promising; we note that it has already been
applied very successfully to the related (but easier) met-
rical task systems (MTS) problem [3, 14].

We build on the approach of Coté et al. [10] and
design an algorithm for the Allocation problem on
any uniform metric, provided the instance satisfies a
certain “convexity” property. We call this problem
the Allocation-C problem. Although we show that
convexity does not hold directly in the Coté et al. [10]
reduction, we do conjecture that it holds in an aggregate
sense, allowing for the use of the Allocation-C problem
to solving the k-server problem. Our ideas already yield
a rather versatile approach allowing us to apply our
techniques to a bunch of problems, defined formally in
the next subsection. We then explain the approach in
more detail.

1.1 Problem Definitions and Preliminaries. We
now define and elaborate on the problems we consider
in the paper.

Metrical Task Systems and Unfair MTS. The
MTS problem was introduced by Borodin et al. [6] as
a generalization of various online problems. There is a
server which can be in any one of n states 1, 2, . . . , n, and
a metric d which defines the cost of moving between the
states. At time step t, a task specified by a cost vector
ct = (ct(1), . . . , ct(n)) arrives, representing the cost of
processing the task in each of the states. Given a task,
the server can choose to move to some other state j from
its current state i while paying a cost of dij +ct(j). The
goal is to minimize the total cost. Borodin et al. [6]
gave a tight deterministic 2n− 1 competitive algorithm
for any metric, and a Θ(log n)-competitive randomized
algorithm for the uniform metric.

Later on, in a breakthrough paper, Bartal et al. [3]
obtained the first polylogarithmic competitive algo-
rithm for general metrics by recursively solving the
problem on HSTs. To do this, [3] defined a more gen-
eral problem called the unfair MTS problem on a uni-
form metric. It is similar to MTS, but has an extra
unfairness parameter r ≥ 1. Here, given vector ct, the
online algorithm (unfairly) pays r · ct(i) in state i, while
the offline algorithm pays ct(i). The movement costs
are the same for both offline and online. Using tech-
niques from online learning, [3] gave an algorithm, that
given any ε > 0, incurs a processing cost of (1 + ε)
times the total optimum cost, and a movement cost of



O(log(n/ε)) times the total optimum cost. This implies
an r + O(log n) competitive algorithm for unfair MTS
(in contrast, the usual MTS algorithm only gives an
O(r log n) guarantee). Such a guarantee allows a solu-
tion of MTS on an HST recursively by solving it for
uniform metrics. The idea is that each state in the un-
fair MTS problem represents a subtree of an HST and r
models the competitive ratio achieved within this sub-
tree. Applying the algorithm of [3] recursively on an
HST, intuitively, r + O(log n) becomes the unfairness
parameter for the next level of the HST (and so on),
thus implying an O(` log n)-competitive algorithm for
an HST of depth `. Bartal et al. [3] further refined their
approach to remove dependence on the diameter of the
HST. Currently, the best known guarantee for the MTS
problem on an HST is O(log n log log n), which is almost
optimal, due to Fiat and Mendel [14].

Finely Competitive Paging. Motivated by the
unfair MTS approach, Blum, Burch and Kalai [4] pro-
posed an unfair version of k-server on uniform metrics
called finely competitive paging. Indeed, they view this
problem as a possible first step towards achieving a poly-
logarithmic (in k) competitive randomized algorithm
for k-server. Finely competitive paging is the following
variation on the usual paging problem. Upon a request
for page p, the algorithm need not necessarily fetch p
into the cache. Instead it can “rent” it. However, rent-
ing only satisfies the current request, in particular, if p
is requested at the very next time step, then again the
algorithm must either fetch or rent p. The offline algo-
rithm can rent at cost 1/r, while the online algorithm
pays cost 1.1 Blum et al. [4] gave a 6(2.8r + 2 ln k)-
competitive algorithm for this problem (in contrast, the
marking algorithm [13] is O(r log k)-competitive). Blum
et al. [4] state their main open question as designing an
r + O(log k)-competitive algorithm for the problem, or
even a weaker (1 + ε)r + (1 + 1

ε )O(log k)-competitive
algorithm.

Allocation Problem. Recently, Coté et al. [10]
gave the first completely formal approach to solving
the k-server problem on HSTs by recursively solving a
problem on the uniform metric. We call their problem
the Allocation problem, defined as follows: there is
a uniform metric on n points and there are up to k
available servers. At time step t, the total number of
available servers k(t) ≤ k is specified, and a request
arrives at some point it. The request is specified by a
(k+1)-dimensional vector ~ht = (ht(0), ht(1), . . . , ht(k)),

1Blum et al. [4] use the version here interchangeably with the
version where the online does not have the ability to rent at all.
We discuss the implications of this issue in more detail in Section
4.

where ht(j) denotes the cost when serving the request
using j servers. Upon receiving a request, the algorithm
may choose to move additional servers to the requested
point and then serve it. The cost is divided into two
parts. The Move-Cost incurred for moving the servers,
and the Hit-Cost, ht(j), determined by the cost vector.
The goal is to minimize the total cost. In addition, the
cost vectors at any time are guaranteed to satisfy the
following monotonicity property: for any 0 ≤ j ≤ k− 1,
the costs satisfy ht(j) ≥ ht(j + 1). That is, serving a
request with less resources can only increase the cost.

Given an instance of the Allocation problem, let
Optcost be its cost. Coté et al. [10] showed that if
there is an online algorithm that incurs a hit cost of
(1+ε)Optcost and a move cost of polylog·Optcost, then
there is a polylogarithmic competitive algorithm for the
k-server problem on general metrics. For completeness,
we describe their reduction, the formal statement of the
above result, and its proof (with a somewhat different
presentation) in Section 6. At a high level, each node
in the HST runs an instance of the Allocation problem
on the uniform metric formed by its children. In the
Allocation problem, the cost vector at a node i at time t
specifies the incremental cost incurred by the optimal k-
server solution on the instance restricted to the subtree
rooted at i.

Intuitively, the monotonicity condition seems very
natural (having more servers can only help), however
it is rather non-trivial to prove, since we are interested
in the incremental cost at each time step rather than
the total cost. Coté et al. [10] were able to show that
monotonicity holds using quasi-convexity of the work
function. Coté et al. [10] showed how to solve the
Allocation Problem on a two point space, and gave a
(1, O(1)) approximation for it. This allowed them to
obtain an O(log D)-competitive algorithm for a binary
HST with α = Ω(log D), where D is the diameter of
the HST. Thus, the main question is whether a similar
result holds for the Allocation problem on a uniform
metric with an arbitrary number of nodes. However, it
is not clear how to extend their ideas to more than two
points2. As they point out, for two points the problem
is similar to MTS on a line (and their algorithm uses
this structure critically).

Allocation-C Problem. We consider a restricted
version of the Allocation problem, where the cost vec-
tors satisfy the following additional convexity property.

2Even if one could obtain a weaker O(polylog,polylog) com-
petitive algorithm for the Allocation problem, this would imply a

sub-linear 2log1−γ D guarantee for k-server which would already
be very interesting, given our current state of knowledge. But
such an algorithm is not known either. Extending the result to
more than two points seems to be the major difficuly.



for any j, 0 ≤ j ≤ k − 2, and time t:

ht(j + 1)− ht(j + 2) ≤ ht(j)− ht(j + 1).

That is, the additional marginal benefit from any ad-
ditional server is decreasing. If we consider the vec-
tors arising from the Coté et al. [10] reduction, this says
that the reduction in cost (at any time), if an additional
server is available, is lesser if there are more servers to
begin with. While this condition seems quite natural,
somewhat surprisingly we show in Section 5 that it does
not always hold in the the reduction instance. Thus, an
algorithm for the Allocation-C problem cannot be used
directly in the reduction of Coté et al. [10]. However, as
we discuss in detail later, the convexity property seems
to hold in a more aggregate sense, which might suffice
for solving the k-server problem. In Section 4 we show
that finely competitive paging is a special case of the
Allocation-C problem.

The Allocation-C problem can also be viewed as a
natural resource allocation problem which may be of
independent interest. Consider a project manager who
runs projects in multi-site locations. The manager can
use up to k resources (workers) to execute the projects.
Each new project p is located in one of the n locations
and can be executed by i ≤ k workers with cost (time)
hp(i). We refer to the execution cost as the service
cost. We note that both monotonicity and convexity
are reasonable assumptions on service cost. Serving a
request with more resources takes less time (cost), i.e.,
the monotonicity assumption. The convexity property
requires that the marginal contribution of adding a
resource is decreasing. (E.g., the reduction in time when
executing the project with two workers instead of one
is larger than the reduction in time when executing the
project with three workers instead of two). In addition,
there is a uniform cost in moving resources from one site
to another. In the online setting, projects arrive one-
by-one, and the algorithm has to execute all of them in
an online fashion while minimizing the sum of service
costs and movement costs.

1.2 Our Results and Techniques. Our main result
is stated in the following theorem:

Theorem 1.1. Let OPT be the optimal offline cost for
the Allocation-C problem. For any ε ≤ 1 there exists an
online algorithm for it such that:

• The service cost is at most (1 + ε)OPT.

• The movement cost is at most O(log k
ε )OPT.

As a special case, we resolve the main open question of
[4]:

Theorem 1.2. There is a
(
(1 + ε)r + O(log k

ε )
)
-

competitive algorithm for the finely paging problem, for
any ε ≤ 1.

In fact, as r < k for all cases of interest (recall that r
models the competitive ratio of a subtree in the HST),
by setting ε = 1/k, we obtain an r +O(log k) guarantee
which is the best possible.

To obtain these results, we work with an extension
of the primal-dual framework for designing online al-
gorithms developed by Buchbinder and Naor [7]. The
approach of [7] applies to online problems that can be
expressed as a covering/packing linear program, possi-
bly with box constraints. In the online case constraints
arrive sequentially over time, and each constraint needs
to be satisfied upon arrival. Variables can only be in-
creased over time, modeling the fact that decisions made
in the past cannot be revoked. The main result of [7] is a
(fractional) online algorithm with a logarithmic compet-
itive ratio. The fractional algorithm can often be con-
verted to a randomized algorithm, however, this part is
problem specific. The primal-dual framework developed
for covering/packing problems has been instrumental in
viewing previous work on online algorithms in a uni-
fied way, as well as for obtaining new results. This in-
cludes, among others, the classic ski rental problem, the
online set-cover problem, graph optimization problems,
machine scheduling, ad auctions, weighted paging, and
more. All these problems can now be solved using the
basic recipe developed for online covering/packing prob-
lems, or simple tweaks thereof.

Extended Primal Dual Framework. Despite
its success, there are two main limitations to this
framework. First, the variables can only be increased
over time, and this might be problematic for several
natural classes of problems, e.g., online learning from
expert advice. For this problem the variables naturally
correspond to the probability mass on experts, which
may both increase or decrease over time3. Second,
requiring the constraints to be non-negative might be
too restrictive for many problems, e.g., ruling out very
simple constraints of the type ai ≥ aj or ai + aj ≥ ak.

The key technical contribution of this paper is to
be able to work with more general forms of constraints
with both positive and negative terms, and also allow
variables to both increase and decrease over time. This
allows the formulation of linear programs that seem very
powerful and interesting.

New Simple Proofs. In addition to our main re-
sult for the Allocation-C problem, we also consider three

3At least we do not know how to write an LP for this problem
where this is not the case.



(P) min
∑n

p=1

∑T
t=1 wp · zp,t +

∑T
t=1∞ · ypt,t (D) max

∑T
t=1

∑
S(|S| − k)aS,t

∀t and S ⊆ [n] with |S| > k
∑

p∈S yp,t ≥ |S| − k ∀t and p 6= pt

∑
S:p∈S aS,t − bp,t+1 + bp,t ≤ 0

∀t and page p zp,t ≥ yp,t−1 − yp,t ∀t and p bp,t ≤ wp

∀t and page p zp,t, yp,t ≥ 0 ∀t and p and |S| > k at,S , bp,t ≥ 0

Figure 1: Primal and dual LP formulations for the weighted caching problem.

other very well studied problems, and reprove known
results for them via the extended primal-dual frame-
work. First, we consider the weighted caching problem,
and describe a new O(log k)-competitive algorithm for
it. This is a very natural and simple algorithm, and
its proof turns out to be extremely simple. Second, we
consider the Unfair MTS problem on a uniform metric,
and reprove the r + O(log n)-competitive algorithm for
it [3], which was the key building block for MTS on gen-
eral metrics. Third, we show how to derive optimal low
regret algorithms for the classic problem of predicting
with expert advice (one can also extend the techniques
here to consider more fancy versions of expert problems,
but we do not address this here). As we shall see, our
algorithms for these problems are quite natural and sim-
ple, and have the same underlying analysis techniques.
We believe that these techniques should find many other
applications.

We note that at a high level, both online algorithms
and learning from expert advice require dealing with an
uncertain future based on the input observed thus far.
This suggests the possibility of an underlying theory
that unifies these two areas, and believe that our work
might be step in this direction. In fact, the recent
book by Cesa-Bianchi and Lugosi [8] on prediction and
learning calls for the derivation of a general theory
allowing a unified analysis of both types of problems.

Finally, we note that recently Shalev-Shwartz and
Singer (e.g. [18]) have proposed a primal-dual approach
for designing and analyzing algorithms for prediction
from expert advice. However, their focus and techniques
seem very different from ours. Their approach seems
specifically tailored towards analyzing regret, and can-
not model other types of costs such as “movement” costs
that arise in typical online problems. At a high level,
they show how weight update strategies for experts can
be viewed as some form of gradient descent. Our ap-
proach, on the other hand, is the typical algorithmic
approach of raising both the dual and primal together,
while maintaining (approximate)-feasibility, and using
the dual to pay for the primal.

Organization. The paper is organized as follows.
In section 2, we study weighted caching, unfair MTS,
and learning from expert advice using our extended

primal-dual approach. This section serves as a gentle
warm up to the primal-dual method and also develops
most of the techniques that we need later. In section 3
we prove our main result for the Allocation-C problem.
In section 4 we show how Allocation-C problem implies
our result for finely competitive paging. In section 5 we
discuss the applicability of the Allocation-C problem
to the k-server problem. In particular, we show that
convexity does not hold directly in the Coté et al. [10]
reduction. However, we claim that it does hold in an
aggregate sense, and state a conjecture and a possible
approach such that the Allocation-C problem can be
used for the k-server problem. Finally, in section
6 we describe the reduction of Coté et al. [10] for
completeness, and to obtain explicit bounds on the
guarantee for k-server given a bi-criteria guarantee for
the Allocation problem.

2 Introducing the Basic Technique

In this section we demonstrate our technique by deriv-
ing optimal algorithms for three different well studied
problems using similar ideas.

2.1 Weighted Caching. We describe a new
O(log k)-competitive algorithm for weighted caching,
and give a much simpler proof than [2]. In the weighted
caching problem there is a cache of size k, and pages
{1, . . . , n} associated with weights w1, . . . , wn. The
weights denote the cost of fetching the pages into
the cache. Pages are requested online and the goal
is to minimize the total weight of pages we fetch
into the cache. We describe a monotonic fractional
O(log k)-competitive algorithm for the problem. It can
be converted to a randomized online algorithm with a
constant factor loss in the competitive factor using the
reduction in [2].

The primal and the dual LP formulations for the
weighted caching problem appear in Figure 1. Note that
this formulation is different from the one used by [2] as
it contains both positive and negative variables. The
variables yp,t denote the fraction of page p missing from
the cache at time t. Let pt denote the page requested
at time t. The primal LP constraint states that at
any time t, if we take any set S of pages, |S| > k,
then the total number of pages outside the cache is at



least |S| − k. The variables zp,t denote the fraction of
page p that is fetched at time t. The first term in the
objective function is the fetching cost and the second
term enforces the requirement that page pt must be in
the cache at time t. (Alternately, we could have just
added the constraint ypt,t = 0, but the above provides
a more unified view useful for later results). The dual
of the LP consists of variables for each set S and time
t, and variables for each page p and time t.

Algorithm. For each page p and time t, the follow-
ing relation between primal and dual variables is main-
tained:

(2.1) yp,t :=
1
k
·
(

exp
(

bp,t+1

wp
· ln(1 + k)

)
− 1

)
.

Consider a request for page pt at time t. Initially, we
set yp,t = yp,t−1 for all p, and hence bp,t+1 is initialized
to bp,t. We set ypt,t = bpt,t+1 = 0. Let S = {p : yp,t <
1}. We start increasing aS,t and bp,t+1 for all pages
p ∈ S \ {pt} at the same rate. By (2.1), increasing
bp,t+1 causes these pages to be gradually evicted from
the cache. The eviction of pages continues until the
primal constraint for set S is satisfied. If some yp,t

reaches the value of 1 during this process, we redefine
S = S \ {p}, and continue on.

Analysis. We observe that both the primal and
dual solutions are feasible at all times. In particular,
bp,t+1 never exceeds wp for any page p, as (2.1) implies
that yp,t = 1 when bp,t+1 = wp, and when this happens
p is removed from S. Moreover, note that satisfying
the primal constraint for the particular set S = {p :
yp,t < 1}, directly implies that the primal constraints
for all sets are satisfied. Finally, the dual constraint is
satisfied as aS,t and bp,t+1 increases at the same rate for
every p ∈ S \ {pt}.

It remains to analyze the cost. Let P and D be the
values of the primal and dual solutions produced by the
algorithm. We prove that throughout the algorithm the
derivative of P is at most O(log k) times the derivative
of D. Suppose that at some point the algorithm
increases the variable aS,t, then:

∂D

∂aS,t
= |S| − k.

In the primal cost, let us consider eviction costs
instead of fetching costs. (Clearly, this can add at most
k times the maximum page weight to the overall total
cost.) Since,

dyp,t

dbp,t+1
=

ln(1 + k)
wp

(
yp,t +

1
k

)
,

and bp,t+1 is being raised at the same rate as aS,t, the
derivative of the eviction cost in the primal is

∑

p∈S\{pt}
wp · dyp,t

dbp,t+1

=


 ∑

p∈S\{pt}
ln(1 + k)

(
yp,t +

1
k

)


≤ ln(1 + k)
(

(|S| − k) +
(|S| − 1)

k

)

≤ 2 ln(1 + k) · (|S| − k) = 2 ln(1 + k) · ∂D

∂aS,t
.

The second step follows as
∑

p∈S yp,t < (|S| − k), and
the last step follows as (x− 1)/k ≤ x− k for x ≥ k + 1.

2.2 The Unfair MTS Problem. In this section we
design a fractional r + O(log n)-competitive algorithm
for the unfair MTS problem in a uniform metric. The
algorithm can be converted to a randomized online
algorithm with a constant factor loss on the movement
cost using the reduction in [2].

It is well known that we may consider only elemen-
tary tasks in which only single coordinate is ε and the
rest of the coordinates are 0 . The primal and dual LP
formulations for the problem appear in Figure 2. The
variables yi,t denote the server fraction in leaf i at time
t. Let pt denote the location that has cost ε at time t.
The primal LP constraint states that at any time t the
number of servers is exactly 1. The variables zi,t denote
the fraction of server in leaf i that arrives at time t. The
first term in the objective function is the movement cost
and the second term is the service cost. Note that the
online service cost (in the unfair setting) is r times the
offline cost. The dual of the LP consists of variables at

for each time t, and variables for each leaf i and time t.

Algorithm: For each leaf i and time t, the following re-
lation between primal and dual variables is maintained:

(2.2) yi,t :=
γ

n

(
exp

(
ln(1 +

n

γ
)bi,t+1

)
− 1

)
.

The first observation is that:

dyi,t

dbi,t+1
= ln(1 +

n

γ
) ·

(
yi,t +

γ

n

)

Consider the request at leaf pt at time t. Initially, we
set yi,t = yi,t−1 for all i, and hence bi,t+1 is initialized to
bi,t. As a result all the dual constraints for states i 6= pt

are tight. We next start increasing at and bi,t+1 at the
same rate for all i 6= pt. This keeps the dual constraints
tight. However, this increases yi,t for all i 6= pt. Since



(P) min
∑

i,t zi,t +
∑T

t=1 ε · ypt,t (D) max
∑T

t=1 at

∀t ∑
i yi,t = 1 ∀t and i 6= pt at + bi,t − bi,t+1 ≤ 0

∀t and leaf i zi,t ≥ yi,t−1 − yi,t ∀t −ε + at + bpt,t − bpt,t+1 ≤ 0
∀t and leaf i zi,t, yi,t ≥ 0 ∀t and i bi,t ≤ 1

Figure 2: Primal and dual LP formulations for the unfair MTS problem.

we should keep
∑

i yi,t = 1, we ensure that

∑

i 6=pt

dyi,t

dat
= −dypt,t

dat

Since

dyi,t

dat
=

dyi,t

dbi,t+1
= yi,t +

γ

n
for i 6= pt

and

dypt,t

dat
=

dypt,t

dbpt,t+1
· dbpt,t+1

dat
= (ypt,t +

γ

n
)
dbpt,t+1

dat

We obtain that

−dbpt,t+1

dat
=

∑
i 6=pt

(
yi,t + γ

n

)

ypt,t + γ
n

≤ γ +
∑

i 6=pt
yi,t

ypt,t
(2.3)

Note, that ypt,t is decreasing throughout the process
and the rest of the yi,t variables are increasing. We stop
the process if ypt,t+1 = 0 or when the dual constraint of
request ypt,t+1 becomes tight.

Analysis:. We observe that both primal and dual
solutions are feasible at all times. In particular, bi,t+1

never exceeds 1 for any leaf i, as (2.2) implies that
yi,t = 1 when bi,t+1 = 1, and when this happens we
stop increasing at. Similarly, all primal constraints are
satisfied. The dual constraint is satisfied as at and bi,t+1

increase at the same rate for every i 6= pt. The dual
constraint of ypt,t is satisfied by construction.

It remains to analyze the cost. To analyze the
movement cost we analyze the derivatives of the primal
and dual costs with respect to the increase in at.
The derivative of the dual solution is simply 1. The
derivative of the movement cost in the primal is:

∑

i 6=pt

dyi,t

dbi,t+1
=

∑

i6=pt

ln
(

1 +
n

γ

) (
yi,t +

γ

n

)

≤ (1 + γ) · ln(1 +
n

γ
)

The inequality follows since
∑

i yi,t = 1. Next we bound
the service cost. If the iteration ends when ypt,t = 0

then the service cost is zero. Otherwise, we know
that the dual constraint of the variable ypt,t is tight.
Therefore, we get:

ε = −∆bpt,t+1 + at

Plugging in Inequality 2.3 (on the derivative), we get:

ε ≤ at ·
(

γ +
∑

i 6=pt
yi,t

ypt,t
+ 1

)
,

and so the service cost is at most:

r · εypt,t ≤ r · atypt,t ·
(

γ +
∑

i 6=pt
yi,t

ypt,t
+ 1

)

= r · at · (1 + γ)

Since the change in the dual during the iteration is at

we are done.
Thus, for any γ < 1, the algorithm is (1 + γ) · r-

competitive for service cost, and is (1 + γ) ln(1 + n
γ )-

competitive for movement cost. Since the interesting
values of r in the unfair MTS problem satisfy r < n, we
get by setting γ = 1/n an (r + O(log n))-competitive
algorithm.

2.3 Predicting from Expert Advice. We now
consider the classic problem of predicting from expert
advice. The most basic version is the following. We are
given n experts. At the beginning of time step t, the
algorithm chooses an expert it−1. Then the cost vector
~ct = (c1,t, . . . , cn,t) indicating the cost for each expert is
revealed and the algorithm incurs a cost of cit−1,t. An
equivalent problem is to maintain a distribution on the
experts, and then the cost is defined to be the expected
cost. We consider the usual setting of regret minimiza-
tion. Here the performance of the online algorithm is
compared with the performance of the best fixed expert
(over time). We adopt the primal-dual approach, but
indeed the algorithm that we get and analyze is essen-
tially the well studied weighted majority algorithm (in
disguise). We obtain the optimum regret O(T log n)1/2),
where T is the number of time steps. As regret scales
with cost, we assume that maxi,t ci,t ≤ 1.

The primal and dual LP formulations for the prob-
lem of finding the best fixed or static expert appear in



(P) min
∑T

t=1

∑n
i=1 ci,t · yi,t−1 +

∑T
t=1

∑n
i=1∞ · zi,t (D) max

∑T
t=0 at

∀t ≥ 0
∑n

i=1 yi,t = 1 ∀i and t = 0 a0 + βi,1 ≤ 0
∀t ≥ 1 and expert i zi,t ≥ yi,t − yi,t−1 ∀t ≥ 1 and i at − βi,t + βi,t+1 ≤ ci,t

∀t and expert i zi,t, yi,t ≥ 0 ∀t ≥ 1 and i bi,t ≤ ∞

Figure 3: The primal and dual LP formulations for the experts problem.

Figure 3. The variables yi,t denote the fraction we as-
sign to expert i at time t. The primal LP constraint
states that at any time t the sum of the fractions add
up to exactly 1. The first term in the objective function
is the cost of the experts and the second term enforces
the condition that the LP cannot change its distribution
over time. (Again, we could have removed this term and
just put the constraints yi,t = yi,t−1 for all i and t, but
the above view is more useful.) Thus, the LP finds the
best static distribution on experts, or equivalently the
best single expert. The dual of the LP consists of vari-
ables at for each time t, and variables for each expert i
and time t.

Algorithm. Note that the primal program is now
irrelevant since it captures the static experts problem.
The online algorithm however can move between ex-
perts, but it compares itself to the dual of the static
expert problem. The algorithm is going to maintain a
relation between the primal and dual variables. At each
step, yi,t will be a function of βi,t+1. We define:

yi,t := exp (−ε · βi,t+1) ,

where ε ≤ 1 will be a parameter in our algorithm. For
each 1 ≤ i ≤ n, we initialize βi,1 = log n

ε , and hence
yi,0 = 1/n. We also set a0 = − log n

ε so that the first
dual constraint is maintained.

Suppose a new cost vector ~ct arrives at time t. The
algorithm updates βi,t+1 by setting

βi,t+1 ← ci,t + βi,t.

This update decreases yi,t resulting in a violation of
constraint

∑n
i=1 yi,t = 1. Then, the algorithm increases

at from 0 (and correspondingly decreasing βi,t+1 while
maintaining the dual constraint βi,t+1 = ci,t + βi,t − at,
until

∑n
i=1 yi,t = 1 is satisfied.

Analysis. Clearly, by design, the algorithm guar-
antees that

∑
i yi,t = 1. Similarly, by design, the al-

gorithm also satisfies the dual constraints. Finally,
we need to ensure that the variables βi,t are non-
negative at all times. This is true since the function
exp (−ε · βi,t+1) = 1 when βi,t+1 = 0, and thus there is
no reason for the algorithm to decrease any βi,t+1 (by
increasing at) beyond this value.

It remains to bound the online cost and relate it to the
dual profit. At any time t we keep a distribution on the
experts and therefore:

1 =
n∑

i=1

exp (−ε · βi,t+1)

=
n∑

i=1

exp (−ε · [ci,t + βi,t − at])

=
n∑

i=1

yi,t−1 · exp (ε · [at − ci,t]) .

Rearranging the expression and using
∑n

i=1 yi,t−1 = 1,
we get:

(2.4) exp (−ε · at) =
n∑

i=1

yi,t−1 exp (−ε · ci,t) .

Observe first that at ≤ maxi ci,t ≤ 1, otherwise the
left-hand side above cannot be equal to the convex
combination of exp (−ε · ci,t). Next, we use the fact that
for any 0 ≤ x ≤ 1 and 0 ≤ ε ≤ 1, 1− εx ≤ exp(−εx) ≤
1− ε

1+2εx. Using these bounds we get:

1− ε · at ≤ exp (−ε · at)

=
n∑

i=1

yi,t−1 exp (−ε · ci,t)

≤
n∑

i=1

yi,t−1

(
1− ε

1 + 2ε
· ci,t

)

Denote by D the value of the dual solution. Rearrang-
ing, we get:

n∑

i=1

yi,t−1ci,t ≤ (1 + 2ε) · at

Next, summing up over all times we get:
T∑

t=1

n∑

i=1

ci,tyi,t−1 ≤ (1 + 2ε)

(
T∑

t=1

at

)

= (1 + 2ε)

(
T∑

t=0

at

)
− (1 + 2ε)a0

= (1 + 2ε)D + (1 + 2ε)
log n

ε
.



We set ε =
√

log n
T (and use the standard doubling trick

when T is unknown) to obtain the guarantee on the
regret.

3 The Allocation-C Problem

In this section we present our main result - an algorithm
for the Allocation-C problem. To this end we define
another problem called caching with costs and reduce
the allocation-C problem to it.

Caching with Costs. A uniform metric on `
points is given. At each time step t, we are given
the number of available servers k(t), and a cost vector
ct = (ct

1, . . . , c
t
`). After the cost vector is revealed, the

algorithm is allowed to move servers between the points
of the metric. Then, for each point i, a cost of ct

i is
incurred if no server is present at i at time t. Again, let∑

i ct
i denote the hit cost at time t and let the cost of

moving the servers be the movement cost.

Lemma 3.1. Any instance I of the Allocation-C prob-
lem can be reduced to an instance I ′ of the caching with
costs problem. Given any solution to I, there is a solu-
tion to I ′ with similar or better cost, and vice versa. It
is possible to convert I ′ to I in an online fashion.

The lemma implies that a c-competitive algorithm for
I ′ implies a c-competitive algorithm for I.

Proof. Given an instance of the Allocation-C problem
on n points, consider the following instance of the
Caching with Costs problem. We replace each point i,
i = 1, . . . , n, by k points (i, 1), . . . , (i, k). This gives
us ` = nk. When a request ~ht

i arrives at i in the
Allocation-C problem, we have the associated vector
~ct = (ct

1,1, . . . , c
t
n,k) defined as follows: For 1 ≤ j ≤ k,

ct
i,j = (ht

i,j−1 − ht
i,j), and is 0 otherwise. For notational

convenience, let ~ct
i denote the vector (ct

i,1, . . . , c
t
i,k). One

can view ~ct as the collection of ~ct
i for i = 1, . . . , n.

By the monotonicity property, the vector ~ct
i is non-

negative, and the convexity property implies that ~ct
i is

monotonically decreasing. We claim that any solution
to the caching with costs problem implies a solution
to the Allocation-C problem that is at least as good,
and vice versa. The idea is that whenever there are ki

servers at point i in the Allocation-C problem, we have
one server each at points (i, 1), . . . , (i, ki) in the Caching
with Costs problem. In particular, if there are ki servers
at i at time t in Allocation-C and we incur a hit cost
of ht

i,ki
, then the hit cost in the Caching with Costs

problem is

k∑

j=ki+1

ct
i,j =

k∑

j=ki+1

(ht
i,j−1 − ht

i,j) = ht
i,ki

− ht
i,k.

We can assume that ht
i,k = 0 and hence the caching

problem also pays ht
i,ki

. (Otherwise, any solution incurs
this cost, and a harder instance can be obtained by
subtracting ht

i,k from each entry ht
i,j . This would still

maintain the monotonicity and convexity properties).
Moreover, whenever a server is moved in the Allocation-
C problem, say from i (with ki servers) to j (with kj

servers), then after the reduction we move a server from
point (i, ki) to point (j, kj + 1). Both these steps incur
a cost of 1.

Conversely, suppose the reduced problem has ki

servers located at a subset S of {(i, 1), . . . , (i, k)}. Then
the hit cost is

∑
(i,j)/∈S ct

(i,j), which by the monotonic-

ity of ct
i is at least

∑k
j=k1+1 ct

(i,j), which is equal to the
hit cost in the Allocation-C problem. Note that this
is where we use the convexity property of ht or equiv-
alently the monotonicity property of ct. Finally, the
movement cost in the allocation problem never exceeds
that in the Caching with Costs problem, as The caching
problem always pays a cost of 1 for moving a server.

We further simplify the problem using a standard
reduction ([5, Lemma 9.1]).

Lemma 3.2. Given any cost vector c = (c1, . . . , c`),
we can replace it by a sequence of ci/ε vectors εi, for
i = 1, . . . , `, where ε is infinitesimally small and vector
εi has cost ε at position i and 0 everywhere else.

We skip the formal proof here, but the idea is that the
reduction can only help the offline algorithm by giving it
more flexibility to change its allocation, while harming
the online algorithm as less information is revealed to it.
Similarly, when the number of available servers k(t) at
time t changes from k(t−1) and a cost vector ct arrives,
we break it into two steps. First, the number of servers
changes (and a 0 cost vector arrives), and only then the
cost vector ct arrives.

3.1 An LP formulation for the Caching with
Costs Problem. Consider the following formulation.
For each time step we have the indicator variable yi,t

which is 1 if the server is absent at point i, and 0
otherwise. Without loss of generality, we assume that
we only need to pay for moving a server to a point, i.e.,
we pay yi,t−1−yi,t if yi,t < yi,t−1, but not if yi,t > yi,t−1.
By Lemma 3.2 above, let pt denote the location that has
non-zero cost cpt at time t. Let T be the time horizon.

(P ) min
T∑

t=1

cpt,t · ypt,t +
n∑

i=1

T+1∑
t=1

zi,t

For each location i with (without) a server initially:
yi,0 = 0 (1)



For any time t ≥ 1 and each subset of locations S:
∑

i:i∈S

yi,t ≥ |S| − k(t)(3.5)

For each location i and time 1 ≤ t ≤ T + 1:

zi,t ≥ yi,t−1 − yi,t(3.6)

For each i and t: yi,t, zi,t ≥ 0

Consider the dual of this program. We associate
the variable αt,S with constraints of the type (3.5), and
variables βi,t with variables of type (3.6). We will also
have variables γi for each initial location. This gives the
following dual program.

(D) max
T∑

t=1

∑

S

(|S|−k(t))αt,S +
∑

i| no server at i

γi

For each location i and time 1 ≤ t ≤ T :∑

S:i∈S

αt,S + βi,t − βi,t+1 ≤ ci,t(3.7)

For each location i and time t = 0: γi ≥ βi,1

For each i and time 1 ≤ t ≤ T + 1:

βi,t ≤ 1(3.8)

For each i and time t and set S: βi,t, at,S ≥ 0

3.2 The Algorithm. We first give a fractional algo-
rithm for the problem. In Section 3.4 we will show how
to round this solution in an online manner to obtain a
randomized algorithm. Our rounding will preserve the
hit cost and increase the movement cost by a factor of
2.

The algorithm maintains both (feasible) primal and
dual solutions and also maintains a connection between
the primal and dual variables. Specifically, we maintain
at all times:

(3.9)

yi,t =
ε

1 + k

(
exp

(
ln(1 +

1 + k

ε
) · βi,t+1

)
− 1

)
.

Note that yi,t = 0 for βi,t+1 = 0 and yi,t = 1 for
βi,t+1 = 1. Note also that k is an upper bound on
any k(t). Another observation is that:

dyi,t

dβi,t+1
= ln

(
1 +

1 + k

ε

)
·
(

yi,t +
ε

1 + k

)
.(3.10)

The algorithm works as follows. Initially, we set
βi,1 = γi = 1 for all non-servers and βi,1 = γi = 0 for all
servers. This is a feasible solution for the dual program
at time 0.

Suppose we get a hit cost cit
at location it. We start

by setting bi,t+1 = bi,t for all i. Let S be the set of points
i such that yi,t < 1. If the primal constraint (3.5) of S
is not tight, we decrease first βit,t+1 until the constraint
becomes tight, or yit,t is zero. Next, if the primal
constraint of S is tight, we start increasing αt,S with
rate 1, and βi,t+1 for each i 6= it also with rate 1. We
then decrease βit,t+1 with rate that is exactly enough
to keep the primal constraint tight, by the following
equality:

− dyit,t

dβit,t+1
· dβit,t+1

dαt,S
=

∑

i 6=it,i∈S

dyi,t

dαt,S
=

∑

i 6=it,i∈S

dyi,t

dβi,t+1
.

Plugging in Equality 3.10 we get that:

−dβit,t+1

dαt,S
=

∑
i 6=it,i∈S

(
yi,t + ε

1+k

)

yit,t + ε
1+k

.(3.11)

We continue with this rate until yit,t = 0 or the dual
constraint (3.7) of yit,t is tight. Next, we handle changes
in k(t). If k(t) increases, so k(t) > k(t−1) (we have more
servers), then the algorithm simply sets yi,t = yi,t−1 for
all i and does nothing else. Note that this keeps the
primal and dual feasible and both primal cost and dual
profit are 0. If k(t) < k(t − 1), then the algorithm
initializes yi,t = yi,t−1 and sets S to be the set of all
locations i such that yi,t < 1. It starts increasing at,S

for this set S and βi,t+1 for all i ∈ S until the primal
constraint (3.5) of the set is tight again.

3.3 Analysis. In this section we prove Theorem 1.1
that states the performance of the algorithm.

Proof. First, we show that the primal and dual solu-
tions are feasible. The primal solution is feasible by
design, since the algorithm always ensures the covering
constraints, and sets zi,t to keep the constraints feasi-
ble. Similarly, the dual constraint (3.7) is satisfied by
design. Constraint (3.8) is satisfied since i is removed
from S whenever βi,t+1 reaches 1, and hence it does not
increase beyond. Similarly, βi,t+1 is never decreased be-
low 0, as yi,t never falls below 0. We are now ready to
bound the cost incurred by the algorithm.

Bounding the movement cost. Without loss of
generality we will pay movement cost only when we
increase yi,t and not while decreasing. This may add
only additive term to the competitive ratio. We increase
variables yi,t only when the primal constraint of some



set S is tight or violated. In this case we also increase
αt,S and get some dual profit. There are two cases,
one in which we decrease yit,t and increase all other
yi,t for i ∈ S and the other when k(t) decreases and we
increase all yi,t. We analyze the first case and show that
the movement cost derivative can be bounded by the
derivative of the dual profit, the second case is similar.
The derivative of the dual profit is simply |S| − k(t).
The derivative of the movement is at most:

∑

i 6=it,i∈S

dyi,t

dβi,t+1

= ln
(

1 +
1 + k

ε

)
·

∑

i 6=it,i∈S

(
yi,t +

ε

1 + k

)

≤ 2 (|S| − k(t)) ln
(

1 +
1 + k

ε

)
(3.12)

where (3.12) follows since we increase yi,t only when
their sum is at most |S|−k(t), and since |S| ≥ k(t)+1 we
have (|S|−1)/(1+k) ≤ (|S|−1)/(1+k(t)) ≤ (|S|−k(t)).

Bounding the hit cost. Consider times in which
we incur a hit cost. For analysis purpose we separate
two cases. One in which the primal constraint (3.5) of
S is tight, and a second in which the primal constraint
is not tight. Consider the first case. We decrease yit,t

until either it is zero, or the dual constraint (3.7) of it
is tight. We partition further the cost cit,t and assume
that we only increase a single αt,S . This only make us
pay more, since yit,t will decrease more later (and we
don’t take this into account). If yit,t becomes zero we
have no hit cost. Otherwise, we know that:

(3.13) −∆βit,t+1 + αt,S = cit,t

However, by equality (3.11) we have an upper bound:

−dβit,t+1

dαt,S
=

∑
i 6=it,i∈S

(
yi,t + ε

1+k

)

yit,t + ε
1+k

≤ ε(|S| − k(t)) +
∑

i 6=it,i∈S yi,t

yit,t
.(3.14)

Combining (3.13) and (3.14) we get that:

cit,tyit,t

≤

ε(|S| − k(t)) +

∑

i 6=it,i∈S

yi,t


 αt,S + αt,Syit,t

= αt,S ·
(

ε(|S| − k(t)) +
∑

i∈S

yi,t

)

= αt,S(|S| − k(t)) (1 + ε) .

Consider now cases in which we get hit cost but
the primal constraint of the set S = {yi,t|yi,t < 1} is
not tight. In general we keep the primal constraint
of S tight at all times except when k(t) is changing.
When k(t) decreases (the constraint is more difficult to
satisfy) we increase αt,S gain dual profit, but pay no
hit cost. The constraint of S may become un-tight only
when k(t) increases (the constraint becomes easier). In
this case the algorithm does nothing. However, later,
when there some cost arrives at point it we decrease
βit,t+1 and so yit,t until it becomes zero or until the
constraint of the set S becomes tight again. If yit,t is
not zero when S becomes tight, then we incur hit cost,
but have no dual profit in the current iteration. To pay
for such an event we look for for a previous decrease in
k(t) in which we gained dual profit, but did not pay any
hit cost. In general, k(t) is increasing and decreasing
throughout the execution, so we can match each increase
to a previous decrease except for a constant number of
the increases that depends on the initial and final values
of k(t). We claim that each decrease of k(t) can pay for
a later increase.

To see that, suppose k(t) has increased and the
primal constraint is not tight, then instead of decreasing
the variable yit,t at the time we incur the hit cost, we
can instead pretend that this hit cost arrived at the time
when we decrease k(t) and decrease yit,t at that time.
We do this using the same process as in the previous
case when the constraint is tight. Note that we exactly
keep equality 3.13 as this is exactly the amount we are
allowed to decrease βit,t+1. Note also that as in the case
of the tight constraint, we increase all y’s by increasing
αt,S and decrease one it by decreasing βi,t+1.

3.4 Converting the Fractional Solution into a
Randomized Algorithm. We show that the frac-
tional solution can be mapped to a distribution on cache
states in an online manner. Moreover, this can be done
such that the hit cost incurred in both solutions is the
same, and the movement cost increases by at most a
factor of 2. We use the same technique as in [4].

Given any fractional solution yi,t at time t, suppose
we have a distribution on cache states such that page i
is present in the cache with probability xi,t = 1 − yi,t.
The expected hit cost of the online algorithm at time t
is exactly the same as that of the fractional solution.

Now, suppose the distribution changes at time t+1.
Suppose that xi,t decreases by ε and xj,t is increasing
by ε. The fractional cost in this case is ε (and any
move can always be decomposed into such moves with
the same total cost). Remove a server from location i
from ε fraction of the configurations and add a server
to location j in ε fraction of the configurations that do
not have a server in location j. This is done with cost ε.



After this step there might be at most ε configurations
with k − 1 servers, call these deficient configurations,
and at most ε fraction of the configurations with k + 1
servers, call these excess configurations. Note that
the measure of deficient configurations is exactly the
same as that of excess configurations. We arbitrarily
match the deficient and excess configurations. In each
such matching there exists a location in which the
excess configuration has a server and the deficient
configuration does not have a server. Thus, we add a
server to the location in the deficient configuration and
remove a server from the excess configuration, and pay
a cost of another ε. Thus, our online algorithm pays at
most 2ε.

4 Finely-Competitive Paging

Recall that in finely competitive paging, the offline
algorithm is allowed to “rent” a page at cost 1/r, while
the online algorithm can only rent at cost 1. Both the
offline and the online algorithms pay 1 to fetch a page.

Remark: In their original formulation, [4] do not
allow the online algorithm to rent a page, even though
in their analysis they allow it to rent at cost 1. This is
fine for obtaining a guarantee of the form O(r + log k)
as in [4], since the ability to rent or not can only change
the online algorithm’s cost by a factor of 2 (if the online
algorithm is not allowed to rent, it can simulate renting
p′ by evicting some page p, fetching in p′, then evicting
p′, and fetching p again). However, as we show next, this
(rather technical) distinction matters if one is interested
in a guarantee of the form (1 + ε)r + O(log k). In
particular, we show that if the online algorithm cannot
rent, then one cannot hope to get a guarantee better
than 2r + O(log k).

Suppose we have a cache of size k and n = k + 1
pages. The request sequence is composed of m À 1
phases. In each phase pages 1 through k are requested
cyclically for, say, a 100 times, followed by a single
request to page k + 1. An offline algorithm that is
allowed to rent a page at cost 1/r, will keep pages 1
to k in memory during all m phases and rent k + 1
once in each phase, thus incurring a total cost of m/r.
However, any optimal solution for an algorithm that
cannot rent pages must incur two page faults in each
phase, one for k+1, and another for some other page in
1, . . . , k, since it is very non-optimal to keep k+1 in the
cache between two consecutive requests for it. Thus,
its payment is 2m. Since r is allowed to be arbitrarily
large, say r À log k, one cannot hope for a guarantee
better than 2r + O(log k).

We show that finely competitive paging is equiv-
alent to a special case of the Allocation-C problem.
If a request for page p arrives at time t in the pag-

ing instance, we give a cost vector c = (c0, . . . , ck) =
(1/r, 0, 0, . . . , 0) at time t in the Allocation-C instance.
It is easily seen that any (possibly fractional) solution
to the paging instance is also a solution with the same
cost for the allocation-C problem, and vice versa. In
both problems, the algorithm pays 1/r if page p is not
fetched into the cache at time t, and otherwise pays
0. Moreover, the cost of fetching a page is identical to
movement cost in the allocation-C problem.

Let H∗ and M∗ denote the optimum hit cost and
movement costs for the fractional allocation-C prob-
lem. By Theorem 1.1, there is an online algorithm for
the allocation-C problem that incurs a hit cost of (1 +
ε)(H∗+M∗) and a movement cost of O(log(k/ε))(H∗+
M∗). Now, consider the online version of finely compet-
itive paging where the online algorithm pays 1 (instead
of 1/r) to rent a page. Using the same solution as deter-
mined by the Allocation-C problem, the fractional pag-
ing algorithm incurs a rental cost of r(1 + ε)(H∗ + M∗)
and a fetching cost of O(log(k/ε))(H∗ + M∗). Since
H∗ + M∗ is a lower bound on the optimum cost, and
the rounding process for the fractional online algorithm
only incurs an O(1) multiplicative cost in the fetching
cost and no extra cost for the renting cost, this implies
an r(1+ε)+O(log(k/ε))-competitive algorithm for finely
competitive paging.

5 How Restrictive is the Convexity
Assumption

We now come back to our main motivation for studying
the allocation Problem. If the allocation problem
obtained in the Coté et al. [10] reduction from k-server
were to satisfy the convexity property, then by Theorem
1.1 we would be done. We investigate this possibility
here.

The Coté et al. [10] reduction and its connection to
Theorem 1.1 are described in detail in Section 6, and we
discuss only the relevant part here. Let i be a non-leaf
node in the HST, and let T (i) denote the subtree rooted
at i. Then, there is an instance of the allocation problem
running on the uniform metric formed by the children
of i; call this problem A(i). Let ρ be a k-server request
sequence ρ (and assume wlog that all requests in ρ are at
leaves in T (i)). Let Optcost(i, j, t) denote the optimum
cost of serving the requests until time t with j servers.
To make Optcost well defined, assume that at t = 0,
the servers are at the first j nodes 1, . . . , j in T (i). Let
∆Optcost(i, j, t) = Optcost(i, j, t)−Optcost(i, j, t− 1).

Suppose at time t, the request arrives at some leaf in
the subtree T (c), for some child c of i. In the reduction
of Coté et al. [10], in the allocation problem A(i), the
cost vector

h(t) = (∆Optcost(c, 0, t), . . . , ∆Optcost(c, k, t))



arrives at c. Recall that Optcost(c, j, t) is the
incremental optimum cost of the “j-server” solution
for the instance restricted to T (c). Intuitively, we
would expect that ∆Optcost(c, j, t) ≥ ∆Optcost(c, j +
1, t) for any j, i.e. the monotonicity property of
h(t). Indeed, why would the optimum solution with
j + 1 serves incur a higher cost for a request with j
servers? Surprisingly, the proof of this is non-trivial and
was shown using quasi-convexity of the work function.
Roughly speaking, the trouble is that we care about the
incremental cost at each step (and not the aggregate
cost).

Now, our convexity condition in addition requires
that for any j, the following holds:

∆Optcost(c, j, t)−∆Optcost(c, j + 1, t)
≥ ∆Optcost(c, j + 1, t)−∆Optcost(c, j + 2, t).

That is, the (incremental) cost benefit for the optimum
solution, when the number of servers increases from j to
j + 1, must be at least as large as the cost benefit when
the number of servers increases from j+1 to j+2. Even
though quite natural, it turns out that the convexity
property does not hold at every step. Consider c to
be a star with, say, ` = 3 leaves and suppose requests
arrive at 1,2,3 repeatedly in that order. With 1 server,
any solution always pays 1 at each step, and hence the
vector ∆Optcost(c, 1) = (1, 1, 1, 1, 1, 1, 1, . . .). With 2
servers, the solution will pay 1 at every alternate time
step, and hence ∆Optcost(c, 2) = (0, 1, 0, 1, 0, 1, 0, . . .).
With 3 servers, clearly the cost is 0 at all times, and
hence ∆Optcost(c, 3) = (0, 0, 0, 0, 0, . . .). By comparing
these vectors at each co-ordinate t, note that convexity
does not hold at t = 2, 4, 6, . . ..

However, the above example is rather unsatisfying.
The convexity condition seems to be violated due to
the “discretness” of the distances. For example, con-
vexity would be true if we could view ∆Optcost(c, 2)
as (1/2, 1/2, 1/2, 1/2 . . .) instead of alternating 0s and
1s. In fact, we are unable to construct stronger counter-
examples to convexity. We conjecture that all violations
to the convexity property are of the above type. That
is, if we could aggregate the costs over few time steps
(instead of looking at each individual time step), the
problem would essentially disappear.

Conjecture 5.1. For any HST T (c) rooted at c and
any t1 ≤ t2:

t2∑
t=t1

(∆Optcost(c, j, t) + ∆Optcost(c, j + 2, t))

≥ 2

(
t2∑

t=t1

∆Optcost(c, j + 1, t)

)
−O(1) ·D(T (c))

where D(T (c)) is the diameter of T (c).

If true, this conjecture (or even a weaker version
of it with the O(1) term replaced by O(polylog)) should
suffice by adapting the Coté et al [10] approach. Instead
of giving a cost vector at every time step, aggregate
enough cost vectors such that the effect of the O(1)
term becomes negligible. This is acceptable, as the
costs vectors at node c are used by the allocation
problem running at i, the parent of c, to determine
how to distribute the servers among c and its siblings.
This distribution is affected by costs of the order of
D(T (i)) = αD(T (c)). Thus, if α is chosen treasonably
(poly-logarithmic) large, one can subsume the effect of
the O(1) ·D(T (c)) term.

In fact, one can easily show the following weaker
variant of Conjecture 5.1.

Proposition 5.1. For any HST, T (c) rooted at c, and
times t1, t2:

t2∑
t=t1

(∆Optcost(c, j, t) + ∆Optcost(c, j + 2, t))

≥ 2

(
t2∑

t=t1

∆Optcost(c, j + 1, t)

)
−O(k) ·D(T (c)).

This follows by viewing a k-server solution as a flow
of k units, and observing that by averaging flows of
value k and k + 2, corresponding to k and k + 2 server
solutions, gives a flow corresponding to a valid k + 1-
server solution. The O(k) ·D term is incurred due to the
cost paid to make flows consistent at the boundaries t1
and t2. We skip the details as this proposition does not
seem too useful. In particular, due to the O(k) term,
it is not clear how to use this in the current framework
unless α > k.

6 Allocation Problem to k-server

Here we will show the following result.

Theorem 6.1. If there is an (1 + ε, log(k/ε))-
competitive algorithm for the Allocation Problem for any
ε > 0, then there is an Õ(log2 D log n log2 k)-competitive
algorithm for any metric space on n points with diame-
ter D. Here Õ notation ignores some log log terms.

We note that all the ideas we describe here are either
implicit or explicit in the work of Coté et al. [10].
However, our presentation is somewhat different and we
give the result here for completeness.

Given a metric G on n points, we first embed it
into a probability distribution over α-HSTs, incurring a
loss of factor O(α log n). We will specify α later. Thus
we focus on a particular HST T . Before we begin, we



give some notation. The root of T is denoted by r. For
an arbitrary node j of T , let T (j) denote the subtree
rooted at j. Let ∆(j) (resp. δ(j)) denote the length
of the edge connecting j to its parent (resp. child).
So, ∆(j) = αδ(j) unless j is a leaf or the root. Let
ρ = (ρ(1), ρ(2), . . .) be the request sequence where ρ(t)
denotes the leaf requested at time t. For each node j, we
will also have a vector κ(j) = (κ(j, 0), κ(j, 1), . . .), where
κ(j, t) denotes the number of servers available in T (j) at
time t. We allow κ(j, t) to be fractional (this makes the
presentation somewhat easier, it is straightforward to
view this as probability distribution on integer vectors).
Throughout, we use k ·~1 to indicate the constant vector
with each entry k.

Consider a subtree T (j), and suppose we are given
a vector κ(j). We define Optcost(j, κ(j), t) to be the
optimum cost of serving the request sequence ρ ∩ T (j)
until time t subject to the constraint that κ(j, t′) servers
are available at any time t′. As usual serving a request
means that we should place at least one unit of server
at the requested point, and the cost of the solution
is simply the total movement cost of the servers. If
the number of servers κ(j, t) at time t changes by
η = κ(j, t)−κ(j, t−1), then we require η units of servers
to enter (or leave as the case may be) at node j and
travel to some leaves.

Remark: In the definition of Optcost, we do not
pay the cost ∆(j)|κ(j, t) − κ(j, t − 1)| due to servers
entering or leaving T (j). Strictly speaking, Optcost
is well-defined only when the starting configuration of
servers is specified. However, this is not important for
our purposes, and we will always assume that number
of servers initially is 0.

For a vector κ(j), let us define g(κ(j), t) =∑t
t′=1 |κ(j, t′)− κ(j, t′ − 1)|. The fact below follows di-

rectly from the definition of Optcost.

Lemma 6.1. Let j be a node in T with children
j1, . . . , jc, then for any request sequence ρ.

Optcost(j, κ(j), t)(6.15)

= min
κ(j1),...,κ(jc):

∑c
i=1 κ(ji)=κ

(
c∑

i=1

Optcost(ji, κ(ji), t)

+ δ(j)
c∑

i=1

g(κ(ji), t)

)
.

Proof. The condition
∑c

i=1 κ(ji) = κ ensures consis-
tency between the number of servers in T (j) and its
subtrees T (ji). Optcost(ji, κ(ji), t) measures the move-
ment cost within T (ji) and g(κ(ji), t) measures the cost
between these subtrees.

We view the allocation problem as follows4: There
is a star rooted at j with children j1, . . . , jc. Let δ denote
the root to leaf distance. At each time step, we are given
κ(t) ≤ k that specifies the number of available servers
at time t and cost vectors hi

t = (hi
t(0), hi

t(1), . . . , hi
t(k))

for each child ji. Upon receiving the vectors, the
algorithm can change the number of serves on leaves
from k1, . . . , kc to k′1, . . . , k

′
c incurring a movement cost

of
∑c

i=1 |k′i − ki|δ and incurs a hit-cost of
∑c

i=1 hi
t(k

′
i).

We will allow k′i to be fractional, in which case we
interpret the cost hi

t(k
′
i) by considering the piecewise

linear extension hi
t to [0, k]. We are now ready to

describe the k-server algorithm.

The k-server Algorithm. Each non-leaf node j
in T solves an allocation problem A(j) defined on j and
its children j1, . . . , jc. The instance A(j) is defined as
follows:

Cost-Vectors: At time t, node ji receives the cost
vector ht

ji
where its m-th entry is given by

ht
ji

(m) = Optcost(ji,m ·~1, t)−Optcost(ji,m ·~1, t− 1).

That is, the incremental optimum cost of the m-server
solution for T (ji) with request sequence ρ ∩ Tji .

Available servers κ(j, t): The number of available
servers is determined recursively. The root r always
has k servers, i.e. κ(r) = k · ~1. For every other node
j, the vector κ(j) is determined by the solution to the
allocation problem running at the root of j.

Analysis. Before we prove theorem 6.1, we state
the following key lemma of Coté et al. [10] . This
lemma relates the optimum cost incurred in a subtree
with vector κ to the cost vectors arriving at j in the
allocation problem. Its proof follows by quasi-convexity
of the work function. In their paper, Coté et al, prove
this lemma for integer vectors κ, but their proof goes
through verbatim for fractional values of κ(t).

Lemma 6.2. For any vector κ(j), and node j of an α-
HST, the following relations hold.

−2
α

α− 1
δ(j)g(κ(j), t)(6.16)

≤ Optcost(j, κ(j), t)−
t∑

t′=1

ht′
j (κ(j, t′))

<
α

α− 1
δ(j)g(κ(j), t).

Remark: Note that
∑t

t′=1 ht′
j (κ(j, t′)) is exactly the

hit cost that would be incurred in the allocation problem

4This view of the allocation problem is equivalent to that
stated in the introduction, up to perhaps a factor 2 difference
in movement costs.



(running on the root of j) if j has κ(j, t′) servers at
t′ = 1, . . . , t.

Proof. (Theorem 6.1). We prove the following claim
by induction on the depth of the HST `.

Claim 6.1. Let T (j) be an α-HST with root j and let
its depth be `. Suppose we are given a vector κ(j).
Consider the k-server algorithm on T (j) obtained by
executing the algorithm above. The value of the solution
produced is no more than β` ·Optcost(j, κ(j),∞), where
β` satisfies the recurrence β0 = 1 and β` = γβ`−1 +
O(log(k/ε)) where

γ = (1 + ε)
(

1 +
3
α

)
+ O

(
log(k/ε)

α

)
.

The claim is clearly true for β = 0 (i.e. a single
point space). Suppose it is true for HSTs of depth
`−1, and let T (j) be some HST of depth `. Given κ(j),
consider some optimum solution for T (j) that achieves
value Optcost(j, κ(j),∞), and let κ∗(ji) be optimum
vectors for the children ji of j corresponding to this
solution. For notational convenience, let us denote
κ = κ(j), δ = δ(j) and κ∗i = κ∗(ji). We also denote
the total cost Optcost(j, κ(j),∞) by Optcost(j, κ(j)),
and for any node i define

Hitcost(i, κ(i)) =
∑

t

ht
i(κ(i, t)).

By (6.15) and (6.16), we have

Optcost(j, κ) =
∑

i

(Optcost(ji, κ
∗
i ) + δg(κ∗i ))

≥
∑

i

(
Hitcost(ji, κ

∗
i ) + δ(1− 2

α− 1
)g(κ∗i )

)

In particular, this implies that
∑

i

(Hitcost(ji, κ
∗
i ) + δg(κ∗i ))(6.17)

≤ α− 1
α− 3

Optcost(j, κ)

≤
(

1 +
3
α

)
Optcost(j, κ).

Consider the allocation problem A(j) running at j.
It computes the vectors κi for the children ji of j, and
since this is a (1+ε,O(ln(k/ε)))-competitive algorithm,
and by 6.18, we get

∑

i

Hitcost(ji, κi)

≤ (1 + ε)

(∑

i

Hitcost(ji, κ
∗
i ) + δ

∑

i

g(κ∗i )

)

≤ (1 + ε)
(

1 +
3
α

)
Optcost(j, κ)(6.18)

and

δ(
∑

i

g(κi))

≤ O(ln(k/ε))

(∑
i

Hitcost(ji, κ
∗
i ) + δ

∑
i

g(κ∗i )

)

≤ O(ln(k/ε))Optcost(j, κ)(6.19)

Now, by the design of the algorithm, it solves
the allocation problem on children T (j1), . . . , T (jc)
with vectors κ1, . . . , κc. By the induction hypothe-
sis, the k-server cost for T (j1), . . . , T (jc) is at most
β`−1(

∑
i Optcost(ji, κi)) and movement cost across

among j1, . . . , jc is δ
∑

i g(κi). Thus, the k-server cost
for the subtree T (j) is

β`−1

(∑
i

Optcost(ji, κi)

)
+ δ

∑
i

g(κi)

≤ β`−1

(∑
i

Hitcost(ji, κi) +
∑

i

δ

α− 1
g(κi)

)

+ δ
∑

i

g(κi)

≤ β`−1

(
(1 + ε)

(
1 +

3

α

)
+ O

(
log(k/ε)

α

))
Optcost(j, κ)

+ O(log(k/ε))Optcost(j, κ).

The first inequality follows by (6.16) and the second
one follows by (6.18) and (6.19). Let γ = (1 + ε)(1 +
3
α ) + O( log(k/ε)

α ). Thus, we get the recurrence β` ≤
γβ`−1 + O(log(k/ε)). Since β0 = 1, we obtain that

β` = O(log(k/ε))
(

γl+1 − 1
γ − 1

)
.

Setting ε = 1/(4`) and α = O(` log(4k`)), we get that
γ ≤ (1+ 1

2` ) and hence β` = O(` log(k`)). Thus we have
an O(α log n` log(k`)) = O(log n`2 log(k`)) competitive
algorithm for general metrics. As ` = O(logα D) =
Õ(log D) this implies the result.

6.1 Rounding the fractional k-server solution.
Note that each node runs the online procedure above,
and this produces a fractional k-server solution for the
HST. We do the following simple simulation procedure
to convert this into an integral solution.

Consider time t, we call a configuration valid, if
for every node and time t there are either bκv[t]c or
dκv[t]e servers in subtree rooted at v. This definition
automatically ensures that there is at most 1 server at
any leaf, and there are exactly k servers in the tree.
Now when the fractional distribution changes, we apply
the technique that we use for (uniform) paging starting
from the root, i.e. if ε mass moves from p in the left



subtree to q in the right, we remove p arbitrarily from
ε fractional of configurations containing it, and add q
arbitrarily to some ε fraction of configurations that do
not contain q. Now, in the left subtree some subtrees
might have 1 fewer node than what is allowed, or one
more node than what is allowed, but the number of such
nodes with excess or deficit is the same, we recursively
balance them. Similarly for the right subtree. As long
as α < 2, it can be shown that the cost of this simulation
is O(1).
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