

1

Direct and Indirect Knowledge Spillovers:

The 'Social Network' of Open Source Projects

Revised August 29, 2010

Chaim Fershtman and Neil Gandal #

Abstract: Knowledge spillovers are a central part of knowledge accumulation. The paper
focuses on spillovers that occur through the interaction between different researchers or
developers that collaborate in different research projects. The paper distinguishes between
project spillovers and contributors' spillovers and between direct and indirect spillovers. The
paper constructs a unique data set of open source software projects. The data identifies the
contributors that work in each project and thus enable us to construct a two-mode network: a
Project network and a Contributor network. The paper demonstrates that the structure of these
networks is associated with project success and that there is a positive association between
project closeness centrality and project success. This suggests the existence of both direct and
indirect project knowledge spillovers. We find no evidence for any association between
contributor closeness centrality and project success, suggesting that contributor spillovers play a
lesser role in project success.

Keywords: Knowledge spillovers, Social Network, Open Source.

JEL Classification: L17

Fershtman: Department of Economics, Tel Aviv University, Tel Aviv, 69978, ISRAEL and CEPR,
fersht@post.tau.ac.il , Gandal: Department of Public Policy, Tel Aviv University, Tel Aviv, 69978, ISRAEL and
CEPR, gandal@post.tau.ac.il. We are grateful the Editor James Hosek and three anonymous referees whose detailed
comments and suggestions significantly improved the paper. We also are grateful to participants at several
conference and University seminars for helpful comments. We thank Rafi Aviav and Sagit Bar-Gill for very helpful
research assistance. Research grants from Microsoft and the Net Institute (www.NETinst.org) are gratefully
acknowledged. Any opinions expressed are those of the authors.

mailto:fersht@post.tau.ac.il
mailto:gandal@post.tau.ac.il

2

1. Introduction
Knowledge spillovers facilitate the transfer of knowledge and ideas between firms,

researchers and research teams. The transmission of knowledge can be done in different ways.

Individuals may learn by being exposed to or by studying different innovation or new

technologies without any personal interaction with their developers. A second type of spillovers

occurs through interaction between individual researchers who discuss and exchange ideas and

information. Academic research may provide a good example for these two types of spillovers.

One may learn new ideas by reading and studying papers and academic research without any

personal interaction with authors of the papers. The second form of knowledge spillovers is by

interacting with coauthors and colleagues.

The focus in the literature is on spillovers between innovations. In the basic setup an

innovation by one firm 'spills over' to other firms that enjoy some of its benefits in terms of

lower cost, better knowledge or some advantage in developing a new technology (e.g.

d'Aspermont and Jacquemin (1988)). In a model of such research spillovers confined to

"connected" firms, Goyal and Moraga-Gonzalez (2001) examine the interaction between the

architecture of the collaboration network in oligopolistic markets and the firm incentives to

invest in R&D.1

Our focus in this paper is on spillovers that occur through direct interaction between

researchers or developers. Commercial and academic research is typically done by teams. The

typical R&D project involves teams of researchers who work together on the same project.

Working in teams involves exchanging ideas and sharing information. Whenever co-workers

collaborate on a joint R&D project, they create knowledge spillovers. Participants of such

research teams carry over their knowledge to other teams and other projects that they are

involved with.

Even when it is the developers who facilitate the spillovers the question is do these

developers "learn" from working on a particular project or do they learn from other individuals

who collaborate with them. In the former case, we will say that there are "project spillovers"; in

the latter case, there are "contributor spillovers". There is a fine distinction between the two

types of spillovers and one of the objectives of this paper is to highlight the difference between

these two types of spillovers and to demonstrate that they can be empirically distinguishable.

1 "See also König et. al (2008) for a model of R&D network formation in which firms are engaged in pairwise
R&D collaboration."

3

Regardless of whether there are "project spillovers" or "contributor spillovers,"

knowledge spillovers can be either direct or indirect. Consider for example project spillovers.

Direct spillovers occur when projects have a common developer who transfers knowledge from

one project to another. That is, a developer takes the knowledge that he acquires while working

on one project and implements it on another project. But knowledge may also flow between

projects even if they are not connected. The indirect route occur whenever a developer who

learns something from participating in one project, takes the knowledge to a second project and

"shares" it with another developer on that project, who in turn uses it when he works on a third

project. In such a scenario, knowledge flows from the first project to the third project, even

though they do not have any developers in common. Clearly such indirect spillovers may be

subject to decay depending on the distance (the number of the indirect links) between the

projects.

Detailed information about R&D projects is typically hard to obtain. In particular

information regarding the identity of developers who participate in each project is not available.

This information is essential in constructing the network of collaboration which is the base of

our study of knowledge spillovers. The recent "open source revolution" provides a unique data

set in which we are able to identify the developers that participate in each project.

The open source model is a form of software development with source code that is

typically made available to all interested parties.2 The open source model has become quite

popular and often referred to as a movement with an ideology and enthusiastic supporters.3 At

the core of this process is a decentralized production process: open source software development

is done by unpaid software developers.4 Since there are many such projects, these developers

may be involved in more than one project and may work with different groups of co-developers

in various open source projects.

The paper uses data from Sourceforge.net to construct a two-mode network of open

source software (OSS) projects and developers. Sourceforge.net is the largest repository of OSS

code and applications available on the Internet, with 114,751 projects and 160,104 contributors

2 Open source is different than “freeware” or “shareware.” Such software products are often available free of
charge, but the source code is not distributed with the program and the user has no right to modify the program.
3 See for example Raymond (2000) and Stallman (1999).
4 Having unpaid volunteers is puzzling for economists. For a discussion on the possible motivation of OSS
contributors see Harhoff, Henkel and von Hippel (2003), Lakhani and Wolf (2005), Lerner and Tirole (2002) and
Hertel, Niedner, and Herrmann (2002). However, as a result of such unclear motivation it is not how to construct a
structural model of these activities. But when the workers are not paid and the product are not sold the players'
objectives are not clear.

4

(in June 2006). Each SourceForge project page links to a “developer page” that contains a list of

registered team members.5 As the development of the OSS projects is done in the public domain

and the developers can be identified by their e-mail addresses we can use this information to

construct the two-mode network of projects and developers. For the "project network" we say

that two OSS projects are connected if there are developers who participate in both projects. In

the related "developers network," two developers are connected if they work on the same OSS

project.6 Interestingly, both the project network and the contributor network consist of one

“giant” connected component and many smaller unconnected networks.

It is not easy to measure the success of open source software. Unlike commercial

software the open source software is not sold or licensed, there are no revenues or any measure

of economic success. One way to measure project success is to examine the number of times a

project has been downloaded. Although this is not always an ideal measure, downloads is a very

good measure of success for open source software.7

The objective of our paper is to improve our understanding of knowledge spillovers by

examining their role in the development and success of OSS projects. Our focus is on the role of

direct and indirect spillovers and the relative importance of project spillovers and contributor

spillovers. We show that whenever there are direct project spillovers, there should be a positive

correlation between the project success and the degree of the project; this is intuitive as the

degree of a project is the number of projects with which the project has a direct link (common

developers). When there are indirect project spillovers as well, we show that there should be a

positive correlation between project success and project closeness centrality. This is intuitive as

well, since closeness centrality is the inverse of the sum of all distances between the project and

all other projects; thus it measures how far each project is from all the other projects in the

network. (We show in section 3 that closeness centrality captures both direct and indirect

spillovers.) In an analogous fashion, direct and indirect contributor spillovers are related to the

contributor degree and contributor closeness centrality.

5Sourceforge.net facilitates collaboration of software developers, designers and other contributors by providing a
free of charge centralized resource for managing projects, communications and code.
6 One can actually construct a weighted network where the weight of a link in the project network is the number of
developers that jointly participate in two projects and the weight of a link in the contributor network is the number
of projects in which two developers work together.
7 Downloads are also often used as a measure of impact of academic articles on the web. The Social Science
Research Network, for example, provides information on the number of downloads for the papers on its website.

5

We first empirically examine the association between project success and network

measures. We show that the network architecture is indeed associated with project success:

projects in the giant component have on the average four times more downloads than projects

outside the giant component. Further, we find that closeness is positively and significantly

associated with higher downloads. This result is consistent with the presence of both direct and

indirect project spillovers. There is not always, however, a positive association between the

degree of the project and progress success. This result is consistent with no evidence for

hyperbolic (i.e., especially strong) direct spillovers.

We then empirically examine the association between contributor spillovers and project

success. Interestingly, we find that none of the contributor centrality measures are positively

associated with success; therefore we find no association between contributor knowledge

spillovers and project success.

Finally, we change the definition of a link and define projects to be ‘strongly’ linked if

and only if they have at least two contributors in common; we obtain a dramatic effect on

network structure. In this new network, the largest component of strongly connected projects

consists of only 259 projects (vs. 27,246 projects in the giant component in the previous

network). We showed that strong connections matter and that there is a large difference between

the average (and the median) number of downloads between projects in the large connected

component in the strongly connected network and other projects in the giant component.

Our paper is related to Grewal, Lilien and Mallapragada (GLM, 2006) who use

Sourceforge data and investigated (using a sample of 108 open source projects) how the network

embeddedness of projects and project managers influence the success of projects. While the

paper uses some of the network measures that we employ, the papers address very different

issues. Our paper focuses on knowledge spillovers that occur through the interaction between

different researchers or developers that collaborate in different research projects. Our paper also

distinguishes between project spillovers and contributors' spillovers and between direct and

indirect spillovers.

Academic research is another area in which contributors' identities are publicly observed.

For example Goyal, van der Leij and Moraga-Gonzalez (GVM, 2006) constructed the co-

authorship network in Economics using data on all published papers that were included in

EconLit from 1970-2000 and studied the properties of this network. Our focus, however, is not

6

on the properties of the network per se, but rather on the relationship between the network

architecture and success.

Our paper is also related to Calvo-Armengol, Patacchini, and Zenou (2008) and Ahuja

(2000) who also consider the relationship between network structure and performance. Calvo-

Armengol et. al. use data on an adolescent friendship network and focus on how the existing

network structure affects pupils' school performance. Ahuja (2000) examines the relationship

between the network formation of technical collaboration among firms in the chemical industry

(from 1981-1991) and innovation, as measured by U.S. patents. Other papers also relates to the

literature that study 'the effect of network structure on behavior' (e.g., Ballester, Calvo-Armengol

and Zenou (2006), Calvo-Armengol and Jackson (2004), Ioannides and Datcher-Loury (2005),

Goeree, McConnell, Mitchell, Tromp and Yariv (2007), Jackson and Yariv (2007), and Mobius

and Szeidl (2007)).8

This paper is also related to the large literature identifying neighborhood effects, non-

market interactions, and spillovers in public, labor and education. A primary concern in this

literature is the endogenous determination of “spillovers” -- good examples are Manski (2000),

Sacerdote (2001), and Angrist and Lang (AER, 2004). This literature has focused on finding

institutional settings that impose a level of randomness that allows one to eliminate the selection

effect and identify the causal effect of neighbors on each other. For instance, Sacerdote uses

random assignment of roommates for Dartmouth College freshmen. The issue of causality is

important in our work as well. This paper does not have an analogous source of randomness or

exogeneity, but rather uses various cuts of the data to evaluate the importance of endogeneity

bias in driving the results. In the IO literature, Rysman (2004) considers network effects.

2. The Two-Mode Network of Contributors and Projects
We obtained our data by “spidering” the website http://SourceFourge.net, which is the

largest Open Source software (OSS) development web site.9 The data was retrieved from

SourceForge.net during June 2006 and includes 114,751 projects and 160,104 contributors who

were listed in these projects.10 The contributors are identified by unique user names they chose

8 For more general surveys on the role of social networks in the functioning of the economy see Jackson (2006,
2008) and Goyal (2007) and for general methods and applications see Wasserman and Faust (1994).
9 Spidering is term used to describe recursive algorithms used to traverse a website page-by-page and automatically
extract desired information based on forms and content pattern.
10 We surveyed all the projects and contributors that were registered in SourceForge.net at that date.

7

when they registered as members in SourceForge. The site’s information structure is rooted in

projects. The interface of SourceForge.net allows almost all of the information about the projects

to be viewed by anyone.11 Each project has a “Project page” which is a standardized ‘home

page’ that links to all the services and information made available by SourceForge.net for that

project. The project page itself contains important descriptive information about the project, such

as a statement of purpose, the intended audience, license, operating system etc.

Each project page links to a “Statistics page” that shows various activity measures, such

as the number of downloads. Each project page also links to a “Developers page” that has a list

of registered team members. This list is managed by the project administrators who are also

listed as team members. The assumption in this paper is that the site members who are listed as

project team members were added to the list because they made a contribution to the project that

involved investment of time and effort. A project is thus seen as a collaborative effort by its team

members, or contributors.

The data we obtained from SourceForge.net form a two-mode-network of projects and

contributors. A two-mode-network is a network partitioned into two types of nodes, e.g. projects

and contributors. We can use the two-mode network to construct two different one-mode

networks: (i) the contributors' network and (ii) project network.12

Contributor Network:

• The nodes of this network are the contributors, i.e., the distinct names (or emails) of the

contributors.

• There is a link between two different contributor nodes if the two contributors

participated in at least one OSS project together.

• Each link may have a value which reflects the number of projects in which the

contributors jointly contributed.

Projects Network:

• The nodes of this network are the OSS projects.

11 A very small number of projects block certain data from being accessed by anyone who isn’t a project team
member.
12 We construct our project network by defining two projects as linked if there are contributors who work in both of
them. One can construct different types of networks based on common on application, language etc. i.e., two
projects are connected if they are written for the same application. In our empirical analysis we control for these
variables. While defining networks based on application and language does capture some aspects of knowledge
spillovers, the thrust of our research is on knowledge spillovers created by individuals. We thus focus on the
networks that are defined by having common contributors.

8

• There is a link between two different project nodes if there are contributors who

participate in both projects.

• Each link may have a value which reflects the number of contributors that participate in

both projects.

The following table shows the distribution of contributors per project and projects per

contributor for the two-mode-network at Sourceforge.net.

Project network Contributor network

Contributors per
project

Number of
projects

Projects per
contributor

Number of
contributors

1 77,571 1 123,562
2 17,576 2 22,690

3-4 11,362 3-4 10,347
5-9 6,136 5-9 3,161

10-19 1,638 10-19 317
20-49 412 20-49 26
≥50 56 ≥50 1

Total Projects 114,751 Total Contributors 160,104

Table 1: The distribution of contributors per project and projects per contributor

Observation 1: (i) Most of the OSS projects are not carried out by large teams of contributors.
On average, there are 1.4 contributors per project. More than two-thirds of the projects have only
one contributor13 and only 1.8% of the projects have ten or more contributors. (ii) Most of the
contributors (90%) participate only in one or two OSS projects.

Table 1 tells an interesting story about the world of OSS projects. Given the excitement

generated by open source software, one might imagine a world in which there is an army of

contributors who work on many different projects; the reality is different. As Observation 1

indicates 68% of the projects hosted at Sourceforge.net have just a single contributor. An

additional 15% of the projects have two contributors. Hence, more than 80 percent of the

projects have either one or two contributors. At the other end of the spectrum, there are 1,638

projects with 10-19 contributors and 468 projects with more twenty or more contributors. Table

1 also indicates that 77% of the contributors worked on a single project and more than 90% of

13 While these projects do not provide links between contributors, such contributors who work on multiple projects
provide links among projects.

9

them worked on just one or two projects. There are a small number of devoted contributors who

work on many projects: there are 3,505 contributors who work on five or more projects and 344

contributors worked on ten or more projects. This suggests that the world of open source

projects is much less strongly connected than we might have believed.

Since our data is a snap shot taken at a particular date it is possible that projects with one

contributor are projects at an early stage of development. There are six levels of development

that range from the planning stage to a mature status. There is an additional status reserved for

projects that are inactive. Table 2 below provides the distribution of the development status for

the single contributor and the multi-contributor projects.

Development status
Relative frequency in
"single contributor"

projects

Relative frequency in
"multi contributor"

projects
1 – Planning 21% 21%
2 - Pre-Alpha 17% 16%
3 – Alpha 18% 17%
4 – Beta 22% 23%
5 – Production/Stable 18% 20%
6 – Mature 1% 2%
Inactive 2% 2%

 Table 2: Development Status

Observation 2: The distributions of the development status for the single contributor and the
multi-contributor projects are similar. Thus the possibility that the single contributor projects are
in some way infant projects seems remote.

Of course, in our analysis, we will control for the time for which the project has been in

existence, the stage of development and we will examine whether our results are robust to the

exclusion of single contributor projects.

2.1 The Network of Contributors:

For the contributor network, there is a link between contributors i and j if they have

worked on at least one project in common. The set of contributors can be divided into

components such that all of the contributors in a component are connected to one another and

there is no sequence of links among contributors in different components. The distribution of the

components is shown in Table 3a. There is a “giant” component, which consists of 55,087

contributors, or approximately 45% of the contributors and many small components as well.

10

Component size
(Contributors)

Components
(sub networks)

55,087 1
196 1

65-128 2
33-64 27
17-32 152
9-16 657
5-8 2,092
3-4 4,810
2 8,287
1 47,787

Table 3a: Distribution of component size

 Table 3b: Distribution of Degree

Degree Number of
contributors

0 47,787
1 22,133
2 14,818

3-4 20,271
5-8 20,121

9-16 16,228
17-32 10,004
33-64 5,409

65-128 2,040
129-256 802
257-505 491

For every contributor in the network, we can define the degree as the number of links

between that contributor and other contributors in the network.14 Table 3b shows the distribution

of degree in the contributor network. There are 47,787 contributors who work only in single

contributor projects and therefore have a degree of zero. At the other end of the spectrum 491

contributors worked on projects in common with more than 256 other contributors.

Observation 3: Despite the fact that more than 90% of the contributors worked only in one or
two projects more than a third of the contributors belong to a giant component of 55,087
connected contributors. The other connected components are relatively small with relatively few
contributors.

2.2 The Network of Projects:

In the project network, a node is a project and there is a link between two projects if and

only if there are contributors who have contributed to both projects. Table 4a shows the

14 Hence, a contributor who worked on a single project with four other contributors has a degree of four. Similarly,
a contributor who worked on two projects, each of which had two additional contributors (who only worked on one
of the two projects), would also have a contributor degree equal to four.

distribution of connected components of the project network. Table 4b shows the distribution of

degree for the project network. The degree of a project is the number of other projects with

which that project has a link.

Size Connected
components

27,246 1
17-27 36

9-16 234
5-8 1,013
3-4 3,419

2 8,020
1 51,093

Degree Number of
projects

0 51,093
1 22,926
2 12,709

3-8 22,004
9-32 5,649

33-64 290
≥65 80

Table 4a: Distribution of component size Table 4b: Distribution of degree

Observation 4: (i) The project network has a very special structure. There is one “giant”
connected component with 27,246 projects (approximately 24% of the projects at the
Sourceforge website) and many very small unconnected components. Remarkably, the second
largest connected component has only 27 projects. (ii) Two-thirds of the project have degree less
than or equal to one. At the other end of the spectrum, 370 projects have degree greater than
thirty-two.

3. Knowledge Spillovers

Learning is done by individuals. It is possible to distinguish between two types of

spillovers: project spillovers and contributor spillovers. In both cases it is the contributors

themselves who facilitate the spillovers. But the question is do contributors "learn" from

working on a particular project or do they learn from other individuals who collaborate with

them. In the former case, we will say that there are "projects spillovers"; in the latter case, there

are "contributor spillovers". It is typically very difficult to distinguish between these two types

of spillovers. We are able to examine this issue empirically because the unique data set we

constructed has detailed information on both projects and contributors.

We start by considering spillovers between projects. Such spillovers can either be direct

or indirect. Direct spillovers occur when projects have a common developer who transfers

information and knowledge from one project to another. Project spillovers may also be indirect,

when knowledge is transferred from one project to another even when the two projects are not

directly linked (i.e., they have no common contributor). The indirect spillover route involves a

11

learning mechanism such that a developer who participates in project X acquires knowledge

when he participates in project Y and then employs the knowledge on project X. Another

'project X' developer (who does not work on project Y) then uses that knowledge on project Z.

This distinction can be summarized by the following definition.

Definition 1: (i) Direct project spillovers exist whenever there are knowledge spillovers
between projects that are directly connected, i.e., they have common contributors. (ii) Indirect
project spillovers exist whenever there are knowledge spillovers between projects that are not
directly connected, i.e., projects for which there are no common contributors.

An alternative approach would be to assume that contributors accumulate knowledge and

there are knowledge spillovers among the contributors. This case involves the contributor

network. We again can distinguish between direct and indirect knowledge spillovers allowing

contributors to "learn" indirectly from other developers even though they do not work together

on the same project.

Definition 2: (i) Direct contributor spillovers exist whenever there are knowledge spillovers
between contributors who are directly connected, i.e., they work together on the same project.
(ii) Indirect contributor spillovers exist whenever there are knowledge spillovers between
contributors who are not directly connected.

Since we do not directly observe spillovers, we will examine the relationship between the

network structure and project success in order to identify the relative importance of the different

types of knowledge spillovers. We briefly discuss the network measures that are relevant for our

analysis. We define these measures in terms of the project network case (the definitions for the

contributor network are analogous).

(i). The degree of a project is the number of projects with which it has a direct link or common

developers.

(ii). Closeness centrality is defined for every project as the inverse of the sum of all distances

between the project and all other projects multiplied by the number of other projects. Intuitively,

closeness centrality measures how far each project is from all the other projects in the network.

According to this definition closeness centrality lies in the range [0,1]. Formally, for any two

nodes , the distance or degree of separation between them (denoted) is the length ,i j N∈ (,)d i j

12

of the geodesic between them where a geodesic is the shortest path between two nodes.

Closeness centrality is calculated as:15

(1)
∑ ∈

−
≡

Nj
C jid

NiC
),(

)1()(

Analogously, we can construct the contributor network and derive the network

characteristics for each contributor; i.e., the degree and the closeness centrality of each

contributor.

We now briefly discuss the relationship between the type of spillovers we have in mind

and the network characteristics that we use. We discuss these relationships for the project

spillover case, but an analogous structure exists for the contributor spillover case. Assume that

all the projects are symmetric except for their position in the network and that the expected

success level of each project (without any spillovers) is given by α. Assume further that each

project also receives a positive (constant) spillover from all 'connected' projects. Thus, the

success level of each project i is α plus β multiplied by the number direct links of each project,

i.e.

(2) Si = α + β*Di ,

where Di is the degree of project i in the network and β is the magnitude of the direct spillovers.

Now assume that the project also enjoys positive spillovers from projects that are

indirectly connected, but that these spillovers are subject to decay. We assume that the greater

the distance between the projects in the projects network, the smaller the indirect spillovers.

Formally, when the distance between project i and j is denoted as d(i,j), we assume that the

expected success of each project is ∑+=
ji jidS),(/γα where γ is the magnitude of the

spillovers.16 Using (1) above, project i's success can be rewritten as

(3)]1/[))(−+= NiCS ci γα ,

where is the measure of project i's closeness centrality. When (3) holds, the spillovers are

fully captured by the closeness measure of each project. Despite this, there are both direct and

indirect spillovers.

)(iCc

15 See Freeman (1979), pp. 225-226 and Wasserman and Faust (1994), pp. 184-185.

13
16 This is only one possible type of decay. Clearly it is possible to assume different types of decay.

It is possible that the direct and the indirect spillovers have different impacts. We can

capture this by the following (more general) specification:

(4) ici DNiCS βγα +−+=]1/[)(.

When 0=β , there are no additional spillovers from directly connected projects above

and beyond those captured by its closeness measure and (4) reduces to (3). When 0>β , the

spillovers have a 'hyperbolic' structure: there are additional spillovers from directly connected

projects.

We will estimate equation (4) and examine if, accounting for the effect of all the control

variables (which we will add to the regression), degree and closeness are associated with a larger

number of downloads. If the estimated coefficient on closeness is positive and significant, there

is evidence for both direct and indirect project spillovers.17 If the estimated coefficient on

degree (β) is also positive and significant, there is evidence for a 'hyperbolic' structure with

especially strong direct spillovers among connected projects. If γ=0, but β is positive, we have

evidence for direct spillovers only, i.e., there are no indirect spillovers. If both γ and β equal

zero, there is no evidence for any direct or indirect spillovers.

4. Direct and Indirect Project Spillovers: Empirical analysis
We wish to examine if and what type of knowledge spillovers play a role in the

development of OSS projects. We start our empirical analysis by defining a measure of success

and different control variables that identify the important characteristics of the OSS projects. Our

analysis of the type of knowledge spillovers will be carried out in the following stages. In this

section, we will examine the association between project network measures and success. We will

then examine the association between contributor network measures and success (Section 5) and

then the importance of thick or strong ties among projects (Section 6.)

4.1 Measuring Success/Output in the Project Network

Defining or measuring the success of an open source project is problematic. There are no

prices and no ‘sales’. The projects are in the public domain and there is no need to request

14

17 There are possible alternative explanations for a positive association between degree and closeness and
downloads; we discuss this issue in section 4.5.

15

permission or to provide payment for using the OSS. One way to measure project success is to

examine the number of times a project has been downloaded. Although this is not always an

ideal measure, downloads is a very good measure of success for open source software.18 Unlike

downloads of academic papers, users will not typically download a project (and its code) unless

it will be useful to them for some task.19

Every month, the Sourceforge.net staff chooses a “project of the month.” Although we

do not know the exact criteria that are employed in choosing the “project of the month,” these

projects are likely to be very “successful.” We obtained data on the "project of the month" for

the forty-two month period ending in June 2006. The “project of the month” projects have an

especially large number of downloads.20 “Project of the month” projects are typically in

advanced stages (stages 4,5, and 6); thirty-eight of the forty-two projects of the month projects

are either in stage 4, stage 5, or stage 6. The thirty-eight “project of the month” projects in

advance stages had on average 6,028,560 downloads, versus 30,206 downloads (on average) for

the other 35,821 projects in advanced stages. The median number of downloads for “project of

the month” projects in advance stages was 1,154,469 versus 483 for other projects in advance

stages. This suggests that the number of project downloads is an attractive measure of use and

value.

There are several different download measures that we could use: (i) the total number of

downloads since the project was initiated at Sourceforge.net (ii) the maximum number of

downloads in any month, and (iii) the number of recent downloads. The correlation among these

download measures is, however, quite high. Since it contains the most information, we chose to

use the total number of downloads in our analysis. Henceforth, when we refer to downloads, we

mean the total number of downloads and denote downloads as the total number of downloads for

the forty-two month period for which we have data. We further define ldownloads ≡

ln(1+downloads), where “ln” means the natural logarithm.

18 Downloads are also often used in order to measure the impact of academic papers and articles on the web. The
Social Science Research Network, for example, provides information on the number of downloads for the papers on
its website.
19 In some cases, the number of downloads is small relative to the number of contributors. In such cases, the
number of downloads may be affected by the fact that developers may need to download the code of the project
when working on the project. When we restrict our analysis to projects with more than 200 downloads, and a
download/contributor ratio of at least ten-to-one (so that the number of downloads is at least an order of magnitude
larger than the number of developers), our results remain qualitatively unchanged: hence our results are robust to the
possibility of 'developer' downloads. See section 4.4.1.
20 Given that there are only forty-two such “projects of the month,” we cannot use this as our measure of success.

16

4.2 Network and Control Variables (Project Characteristics)

For our empirical analysis, we employ the project network variables ldegree =

ln(1+degree) and lcloseness = ln(0.05+closeness),21 where degree and closeness were defined in

section 3. In addition to downloads and the network variables, we have data for a group of

control variables that includes the amount of time that the project has been in existence, the stage

of development, the number of operating systems for which the program was written, the

number of languages in which the program is written, as well as several other control variables:

• The variable years_since is the number of years that have elapsed since the project first

appeared at Sourceforge: lyears_since=ln(years_since).

• The variable cpp is the number of contributors that participated in the project:
lcpp=ln(cpp)

• The dummy variable ds_j refers to the stage where j ranges from one to six. There is an

additional stage, denoted inactive, which means the project is no longer active. See
Table 2. A few of the projects are considered to be in multiple stages. Hence, for a
particular project, it is possible that both ds_3 and ds_4 could be equal to one.

• The variable count_trans is the number of languages in which the project appears

including English. Virtually all of the projects (95%) are available in English. The other
popular languages include German (5% of the projects), French (4%), and Spanish (3%).
 lcount_trans=ln(count_trans)

• The variable count_op_sy is the number of operating systems (i.e., formats) in which the

project is compatible. Some of the projects are available for several operating systems.
The main operating systems in which the projects were written include Windows (32%
of the projects), Posix (26% of the Projects), and Linux (21% of the Projects.
lcount_op_sy=ln(count_op_sy)

• The variable count_topics is the number of topics included in the project description.

Popular topics include the Internet (16% of the projects), software development (14%),
communications software (11%), and games & entertainment software (10%).
lcount_topics=ln(count_topics)

• The variable count_aud is the number of main audiences for which the project was

intended. The main audiences are developers (35% of the projects), end users (30% of
the projects), and system administrators (13% of the projects). Some of the products are
intended for multiple ‘main audiences’ while other projects are not intended for these
main audiences, but rather just for niche audiences, i.e., just for a particular industry (i.e.,

21 The reason we add such a small number is because the mean value of closeness is 0.14.

17

telecommunications) or just for very sophisticated end users. lcount_aud =
ln(1+count_aud)

Clearly, there are different ways to construct these variables. For example, we could have

simply counted the key operating systems, or used dummy variables for these operating systems.

Similarly, we could have defined dummy variables for ‘main audiences’ or we could have added

up the number of main audiences together with the number of niche audiences. We chose the

definitions that seemed most natural. Our main results regarding the number of contributors and

the network variables are robust to alternative definitions of these control variables.22

4.3 Empirical Results

We estimate a simple log/log model of the form ldownloadsi = α + βNi + γCi + εi, where

the subscript i refers to the project. Ni is the natural logarithm of the “network variables” and Ci

is the natural logarithm of the control variables.23 For binary ({0,1}) variables, we, of course do

not employ logarithms; εi is a random error term.

We have data on 114,450 observations for all of the network variables as well as on

years_since.24 However, data on the stage of development and the count variables are

incomplete; data on all of the control variables are available only for 66,511 projects. Since

there is no selection issue,25 we use only the data on the 66,511 projects for which we have

complete information. We use information from all the projects to construct the network

variables that are included in the database. We first conduct an analysis using these projects and

examine the association between degree (and the control variables) and success. We then

examine the giant component in detail (18,697 projects for which there is complete information),

which enables us to include closeness in the analysis.26

22 Contributor effort is not observable. As we discussed in the introduction, the main reward to OSS contributors is
being included in the list of contributors. Thus the incentive they have is to provide the sufficient effort to
accomplish this status. Hence, effort is not likely correlated with network measures or the control variables – and
hence, the absence of data on effort does not bias our results.
23 The relationship between the number of contributors and downloads is likely non-linear: additional contributors
are likely associated with a larger number of downloads, but the marginal effect of each additional contributor
declines as the number of contributors increases. The same is likely true for the relationship between the network
variables and downloads as well. This suggests that a "log/log" model is appropriate. We examine alternative
functional forms in section 4.4.2. In that section, we indeed show find that the log/log specification has a higher
adjusted R-squared that both the log/linear and linear/linear specifications.
24 There are 114,751 total projects, but we are missing data on downloads for a small number of them (301).
25 See Griliches (1986) and Greene (1993).
26 The values of degree and closeness centrality are calculated using the software program Pajek, which is a
software program for large network analysis. See http://pajek.imfm.si/doku.php.

18

 The effect of degree (as well as other effects) may depend on whether the project is in

the giant component or not; we therefore introduce the variable "giant_comp" which is a dummy

variable that takes on the value one if the project is in the giant component, and takes on the

value zero otherwise. In order to allow for the possibility that the association between degree

and downloads and between the number of contributors and downloads depends of whether the

project is inside or outside of the giant component, we also include the following interaction

variables in the analysis:

• lgiant_degree = ldegree*giant_comp,

• lgiant_cpp = lcpp*giant_comp,

By including the interaction variables, we allow for the possibility that there will be different

download “elasticities” for projects in and projects outside of the giant component.27

Descriptive statistics of the variables are shown in Table A1 in the appendix. Table A1

shows that projects in the giant component have on average many more downloads than projects

outside of the giant component (42,751 vs. 10,959). Further, projects in the giant component are

on average (i) older than projects outside of the giant component (3.63 years vs. 2.70 years), (ii)

have more contributors (3.84 vs. 1.61), and (iii) have a larger degree (6.26 vs. 1.18).28 The

results of a regression with all 66,511 observations are shown in the first column of Table 5.

The effect of the number of contributors: The estimated coefficients show that the association

between downloads and the number of contributors is positive – projects with more contributors

have a greater number of downloads. For projects outside of the giant component, the estimated

“contributor” elasticity is 0.46. This effect is statistically significant. The estimated “contributor”

elasticity is virtually twice as large for projects in the giant component: 0.90 (0.46+0.44). The

difference in the estimated “contributor” elasticity between projects in the giant component and

projects outside of the giant component is statistically significant: additional contributors are

associated with greater increases in output for projects in the giant component than in the non-

connected component. This result obtains despite the fact that there are many more contributors

(on average) for projects in the giant component (3.84 vs. 1.61).

27 The addition of different slopes for the control variables based on whether the project was inside or outside of the
giant component has no effect on the main results regarding the number of contributors and the degree of the
project.
28 Correlations among the network centrality variables in the giant component are shown in Table A2 in the
appendix.

19

The effect of project's degree: The association between the degree of the project and the

number of downloads, is positive and statistically significant both for projects inside the giant

component and for projects outside of the giant component. For projects outside of the giant

component, the degree elasticity is 0.19, while the degree elasticity for projects in the giant

component is 0.14. Both of these magnitudes are statistically significant from zero; the

difference in the magnitudes is not significantly different from zero.

The effect of the control variables: The estimated coefficient of lyears_since is positive (1.42)

and statistically significant. Projects that have been active longer have more downloads, and the

estimated coefficient suggests that a doubling of the time a project has been active is associated

with 142% more downloads. The estimated coefficients on the stage variables have the expected

signs. By and large, projects that are in more advanced stages are associated with more

downloads. Similarly, projects written for several operating systems, projects available in more

languages, projects written for more main audiences, and projects that span more topics are

associated with more downloads as well.

Observation 5: (i) Projects in the giant component have on average (four times) more
downloads than projects outside of the giant component. (ii) Projects with more contributors
have a greater number of downloads and this effect is stronger in the giant component. (iii) The
association between the degree of the project and the number of downloads, is positive and
statistically significant (both inside and outside the giant component).

From Observation 5 we can conclude that the network architecture does affect the

number of downloads which suggests that there are knowledge spillovers among the projects.

Table 5: Regression Results: Dependent Variable: ldownloads
 Dept Variable:

Ldownloads
Regression 1

(All 66,511 Projects)

Regression 2
(Giant Component -

18.697 Projects)
Independent Variables Coeff. T-stat Coeff. T-stat

Constant 0.72 17.76 1.45 3.62
lyears_since 1.42 60.66 1.68 31.08
lcount_topics 0.23 9.07 0.18 3.59
lcount_trans 0.35 11.73 0.45 8.15
lcount_aud 0.36 10.44 0.44 5.85

lcount_op_sy 0.11 5.95 0.18 5.00
ds_1 -1.96 -60.57 -2.01 -31.90
ds_2 -0.60 -17.58 -0.78 -11.50
ds_3 0.89 25.83 0.66 9.95
ds_4 1.86 57.21 1.80 29.27
ds_5 2.72 79.97 2.61 40.96
ds_6 2.12 27.07 2.03 15.35

Inactive 0.45 6.11 0.39 2.75
Lcpp 0.46 18.71 0.87 29.34

Ldegree 0.19 9.45 0.079 2.10
Giant_comp -0.21 -3.86
lgiant_cpp 0.44 12. 05

lgiant_degree -0.05 -1.26
lcloseness 0.69 3.21

of Observations 66,511 18,697
Adjusted R-squared 0.41 0.40

Our next step is to introduce the variable lcloseness into the regression (see the second

regression in Table 5). Since closeness is only comparable across linked networks, this

regression is done for the giant component only (18,697 observations). Note that in the new

regression the estimated contributor elasticity (0.87, t=16.71) and the estimated coefficient on

lyears_since (1.68, t=31.08) are again positive and statistically significant. The estimated

coefficients on the stage and count variables again have the expected signs and are qualitatively

similar to those in the first regression in Table 5.

This regression also shows that the estimated closeness elasticity (0.69, t=3.21) is

statistically significant. Controlling for closeness, there is still a positive association between the

number of downloads and the degree of the project. The estimated degree elasticity (0.079,

t=2.10) is also statistically significant in this regression.

20

21

Observation 6: Closeness is positively and significantly associated with higher downloads. This
suggests that indirect spillovers are important.

The second regression in Table 5 indicates that the estimated coefficient on degree is also

positive and significant. This suggests that there are 'hyperbolic' direct spillovers as well. We

now will conduct several robustness tests in order to examine whether these results are robust.

4.4 Robustness Analysis

In this section, we will examine whether the results in the second regression in Table 5

are robust by examining established projects only, projects with more than one contributor, and

projects with a relatively large number of downloads. We then examine the robustness of the

results to functional form, to possible endogeneities, and to including an additional network

centrality measure. We conclude this section by examining alternative interpretations of the

results.

4.4.1 Established projects, more than one contributor, and a large number of downloads

Nascent projects may not have reached a steady-state number of contributors. Personnel

additions are probably more likely for relatively new products. Here we examine whether our

results are robust to using only established projects in the analysis. We also restrict the analysis

to projects in existence for at least two years. For similar reasons, we also restrict the analysis

here to projects with more than one contributor. (We focus henceforth on the second regression

in Table 5 because this regression includes degree and closeness.)

In some cases, the number of downloads is small relative to the number of contributors.

In such cases, the number of downloads may be affected by the fact that developers may need to

download the code of the project when working on the project. Hence, we also restrict our

analysis to projects with more than 200 downloads, and a download/contributor ratio of at least

ten-to-one (so that the number of downloads is at least an order of magnitude larger than the

number of developers).

When we include all of the above three robustness "restrictions" together (projects with

more than one contributor, projects in existence for more than two years, projects with more than

200 downloads, and a download/contributor ratio of at least ten-to-one), we are left with 6,397

observations. We again find that the estimated contributor elasticity (0.76, t=22.21), the

estimated closeness elasticity (0.71, t=3.28), and the estimated degree elasticity, (0.19, t=5.07)

22

are positive and statistically significant. The robustness analysis thus suggests that the results

regarding the contributor elasticity, closeness and degree are robust to all of these changes.

These results are shown in the first regression in Table A3 in the appendix.29

4.4.2 Robustness to Functional Form

When we run a log/linear regression (the dependent variable remains in logarithms, but

the independent variables are in levels), we have the following results: the estimated coefficient

on closeness is positive and statistically significant both for a regression with all observations in

the giant component, as well as for a regression (6,397 observations) with all three robustness

restrictions discussed above in section 4.4.1. The estimated coefficient on degree is insignificant

in a regression with all observations in the giant component; it is positive and statistically

significant in a regression with all three robustness restrictions from section 4.4.1.

When we run a linear/linear regression (both the dependent variable and the independent

variables are in levels), rather than a log/log regression, the estimated coefficient on closeness is

still positive and statistically significant. The estimated coefficient on degree is positive, but no

longer statistically significant. This result holds both for a regression with all observations in the

giant component (18,697), as well as for a regression (6,397 observations) with all three

robustness restrictions from section 4.4.1.30

We can thus conclude that the positive and statistically significant results regarding

closeness are robust to functional form. The results on degree are not completely robust to

functional form.

4.4.3 Potential Endogeneities

 Degree could be endogenous in our data set. Here, the interpretation would be that

developers may want to be associated with more successful projects. This would make degree

endogenous. (This is sometimes referred to the 'chicken' vs. 'egg' issue.)

Closeness could also be endogenous under the following scenario: developers may want

to work on a particular project so that a developer on that project can "introduce" them to a

29 The same qualitative results are obtained when we examine these three robust restrictions separately. The
estimated contributor elasticity remains positive and statistically significant in all specifications. Since our focus is
on degree and closeness, we do not discuss the estimated contributor elasticity in the analysis that follows.
30 The linear/linear specification has a very low adjusted R-squared (0.04). In contrast, the log/linear specification
has an adjusted R-squared of 0.25; the log/log specification (regression #1 in Table A3) has an adjusted R-squared
of 0.28.

23

developer (on another project) whom they would like to meet. Since our network is a fairly thin

one (many projects and relatively few developers) and that the average project in our dataset has

less than four contributors to a project in the giant component, it is unlikely that this indirect

contact mechanism would play any role. It would likely be much easier and much more effective

to simply contact the programmer directly. Nevertheless, we wish to address this potential

endogeneity as well

With the exception of Calvo-Armengol, Patacchini, and Zenou (CPZ, 2008), we are not

aware of any empirical papers in the social network literature that estimate a structural model

and (hence) are able to econometrically deal with the endogeneity issue by using instruments.

Unfortunately, neither the CPZ (2008) nor other theoretical models (like König et al., 2008) are

appropriate for our setting. Even if we could develop a structural model, it would likely depend

on variables like effort or marginal cost that are not observable.

Hence, we must address the potential endogeneity of degree and closeness in another

way. One way to address this issue is indeed to only consider relatively young projects. The

'joining popular projects' effect is likely to be less of a factor for relatively young projects. When

we run a regression with projects less than 3.63 years old (the mean age of the projects in the

giant component), with more than 200 downloads and a download/contributor ratio greater than

10, we find the following:31 The estimated coefficient on closeness remains positive and

statistically significant (0.54, t=2.37), while the estimated coefficient on degree (0.0038, t=0.09)

is not statistically significant. (These results appear in the second regression in Table A3 in the

Appendix.)

 This suggests that degree is indeed potentially endogenous. Nevertheless, the estimated

coefficient on closeness is virtually unchanged. These results suggests that closeness is not

endogenous and that, despite the potential endogeneity of degree, the results for closeness

remain qualitatively unchanged. Our main conclusion, that there are both direct and indirect

spillovers, holds despite the potential endogeneity of degree.

4.4.4 The flow of Information: Betweenness Centrality

In this section, we consider another centrality measure -- betweenness centrality – and we

examine whether our results are robust to its inclusion. Before we define betweenness centrality,

31 We did include projects with a single contributor here because they are important when examining 'young'
projects.

we will illustrate this measure by using the (thick) project network shown in Figure 2 in the

Appendix. We can see that this network has an interesting structure. There are three clusters or

groups of highly connected projects.32 The three clusters remain connected as part of one

component only because project 81 is connected to all these three groups. Project 81 has a

relatively small degree, but its position in the network is unique and central. This position is

relevant for an additional type of knowledge spillover. Assume for example that the three groups

in Figure 2 describe a friendship network among people. Moreover assume that each cluster in

this network is a group of friends that are similar in their backgrounds and preferences. Suppose

that the knowledge transmitted in this network is about the quality of a restaurant or a movie. In

this case the information received from members of the same group would be more valuable

than information received from members of other groups. On the other hand, there are research

settings where ideas come from groups of researchers who think and solve problems in different

ways. It is possible that in such an environment the more valuable knowledge spillovers come

from outside of the research group's inner core. In these cases, the position of project 81 (Figure

2), which is linked to several different clusters of projects, may benefit from valuable knowledge

spillovers from the different clusters of projects.

We capture this effect by introducing betweenness centrality into our empirical analysis.

Betweenness centrality is defined as the proportion of all geodesics between pairs of other nodes

that include this node.33 Betweenness captures the notion that a node is considered "central" if it

serves as a valuable juncture between other nodes. Project 81 in Figure 1 indeed has relatively

high betweenness. Formally, the betweenness of a node is given by i

(5) { , }
()

()
(# 1)(# 2) 2

j k jk jk
i j k N

B

i
C i

N N

γ γ<
∉ ⊆

⎡ ⎤⎣ ⎦
≡

− −

∑

where jkγ is the number of distinct geodesics between the nodes j and which are distinct

from , and

k

i ()jk iγ is the number of such geodesics which include i .34 When we add

betweenness to the analysis, and run a regression (6,397 observations) with all three robustness

restrictions from section 4.4.1, we find that the estimated coefficient on degree is insignificant,

while the estimated coefficient on closeness remains positive and statistically significant

32 Each has some periphery networks that are connected only to one particular group.
33 See Freeman (1979), pp. 230-231 and Wasserman and Faust (1994), pp. 189-190.

24

34 The denominator of (1) is the maximum possible value for the numerator, and thus standardizes the measure in
the range [0, 1].

25

(coeff=0.45, t=2.08.) This again suggests that our results on closeness are again robust. The

estimated coefficient on betweenness is positive and statistically significant, suggesting the

possibility of an additional type of knowledge spillover. (These results appear in the third

regression in Table A3 in the Appendix.)

Robustness results in sections 4.4.1-4.4.4 show that the estimated coefficient on

closeness remains positive and statistically significant in all 'robustness' specifications, while

degree becomes insignificant in several instances. Note that a positive coefficient on closeness

provides evidence for both direct and indirect spillovers. Since the coefficient on degree

becomes insignificant in several robustness regressions in sections 4.4.1-4.4.4, we do not find

convincing evidence for 'hyperbolic' direct spillovers.

Observation 7: Both direct and indirect spillovers are important. Closeness is positively and
significantly associated with higher downloads. However, we do not find convincing evidence
for hyperbolic direct spillovers as, controlling for closeness, there is not always a positive
association between the degree of the project and number of downloads.

4.4.5 Alternative Interpretations of the Results

Positive correlations are, of course, not sufficient for identifying a knowledge spillover.

Indeed, the interpretation of a direct knowledge spillover would be problematic if there were

only a few highly productive developers and these productive developers signed up for many

projects and also caused their projects to have high downloads. In such a case, degree would be

significant in the regression, yet there would be no knowledge spillover.

We went back and excluded projects that had developers who worked on five or more

projects (i.e., 'star' contributors). In this new robustness regression, we included the robustness

restrictions from section 4.4.1 (more than one contributor, projects that were at least two years

old, projects with more than 200 downloads and a download/contributor ratio greater than 10.)

We had 2,917 observations in this regression. The summary of the regression results (for the

network variables) is as follows: Both the estimated coefficient on closeness (0.77, t=2.51), and

the estimated coefficient on degree (0.38, t=4.54) remain positive and statistically significant.

There is also an alternative explanation (i.e., non-spillover story) regarding the positive

correlation between closeness and success: if highly productive developers work together (a few

to a project), their projects will be high in 'connectedness' since they will be linked to other

projects characterized by many links even if there is no spillover. While this story is plausible in

a small, relatively tightly connected network, it is unlikely in our network, which is huge and

26

fairly thinly connected (see Table 1.) This suggests that the interpretation of degree and

closeness as knowledge spillovers is reasonable in our case.

5. Contributor Network Characteristics and Project Success
Until this point, we focused on project network characteristics and the way they were

associated with the success of the projects. Our next step is to focus on the contributor network

characteristics and to examine their relation to project success.

5.1 The effect of contributor characteristics.

We construct the contributor network and derive the network characteristics for each

contributor. In order to examine the relationship between these characteristics and project

success, we need to look at the group of contributors who participate in each project and define

measures that capture the network characteristics of these contributors. For each project we form

a list of contributors and construct the following variables:35

(i) Average degree of the contributors in a project.

(ii) The average closeness centrality of the contributors to a project.

The above variables differ respectively from the degree of a project and the closeness

centrality of a project. For example, consider project A with two contributors (denoted I and II),

each of whom works on one other project. This means that project A has a (project) degree equal

to two. Further suppose that contributor "I" also works on project B, and that there are three

other distinct contributors on project B. Similarly, suppose that contributor II also works on

project C, and that there are again three additional distinct contributors on project C. The

"contributor" degree of contributor I equals four (since he/she participates with four other

contributors in two different open source projects). Similarly, the contributor degree of "II" is

four as well. Hence, the average contributor degree of project A is four.

While the degree of the project and the average degree of the contributors to a project are

relatively highly correlated in our data set (0.44),36 there is virtually no correlation between the

closeness centrality of a project and the average closeness centrality of its contributors (0.03).

35 Our results are robust to employing the maximum degree and maximum closeness centrality of the contributors
on a project rather than the average degree and closeness centrality of the contributors on a project
36 This is the correlation between the natural logarithm of the variables, since we use those in the analysis.

27

We first ran a regression similar to the second regression in Table 5 with the two

contributor network variables instead of the two project network variables. Neither the average

closeness centrality of the contributors to a project (coefficient = 0.12, t = 1.59) nor the average

degree of the contributors on a project (-0.019, t = -0.72) are statistically significant. When we

include both the project and contributor centrality variables in the regression, we find that

project centrality measures (degree and closeness) are again highly associated with success,

while the contributor centrality variables are not associated with project success.

Observation 8: Our analysis indicates that with respect to OSS software development it is the
project spillovers which are important and not the contributor spillovers. Specifically, direct and
indirect project spillovers are associated with project success while knowledge spillovers
between individual contributors are not associated with project success.

Our analysis examined two types of spillovers; spillovers between projects and spillovers

between individuals. In both cases it is the contributors themselves who facilitate the spillovers.

But the question is do they "learn" from working in a particular project or do they learn from

other individuals who collaborate with them. Observation 8 states an interesting result: in the

world of OSS projects, spillovers occur between projects and not between participants.

 5.2 The "Star" Effect

Some of the contributors in our data set work in many projects. The question is if these

individuals have special talents or ability that make a significant contribution to the projects in

which they participate. We define a "star" as a contributor who worked on five or more projects.

Clearly having a "star" contributor gives a project more connections with other projects. Indeed

we find that stars are much common in projects that are in the giant component. Specifically,

45% of the projects in the giant component have at least one star while only 8% of the projects

outside of the giant component do not have a star. An interesting question is if having a "star" in

the team of developers has an effect on the success of a project.

To examine this, we add a dummy variable (denoted star) -- which takes on the value one

if the project has at least one star and takes on the value zero otherwise -- to the second

regression in Table 5. The estimated "star" contributor is negative (-0.14, t=-1.94). Since degree

and star are highly correlated, one possibility is that any positive effect associated with a 'star' is

picked up by degree.37

37 The estimated coefficient on closeness (0.68, t=3.17) is unaffected by the addition of "star".

28

Observation 9: After controlling for network centrality measures, 'star' programmers do not
make any significant contribution to project success. That is, 'star' programmers do not make a
difference beyond that captured by changes in the network measures of the projects in which
they participate.

 Note that our above conclusion is with respect to having a star working for the project

and holding the degree and the structure of the network fixed. Clearly, when a star contributor

chooses to work for a certain project he changes the network structure and in particular the

network characteristics of the project for which he works. Hence, the above observation suggests

that any additional contributions made by star contributors are fully taken into account by the

change in the network measures.

6. The Importance of Strong Ties
So far we defined two projects to be linked if there was at least one contributor in

common between them. But the potential of spillovers between projects may depend also on the

number of contributors who participated in both projects. To capture this effect we change the

definition of a link and focus only on "strong" (or thick) links. Two projects are ‘strongly’ linked

if they have at least two contributors in common. That is, we define a new network in which the

nodes are still projects, but the links are only 'strong' (thick) links.

Redefining the network has a dramatic effect on it structure. Previously in a network in

which one contributor in common was sufficient for a link, there was a giant component of

27,246 projects. In the strongly connected network, the largest component of strongly connected

projects consists of only 259 projects. There are four other smaller strongly connected

components with between 50-75 projects. No other components have more than 27 projects.38

A comparison between projects in the (i) large strongly connected component, (ii) the

four smaller strongly connected components, (iii) and other projects in the giant component is

presented below in Table 6.39

38 Figure 2 in the Appendix shows the structure of the largest component in the "strongly connected" network.
39 The same qualitative result obtains if we restrict the analysis to projects in stages 4-6. In such a case, the medium
(mean) number of downloads are respectively: 11,230 (155,428) for projects in the largest strongly-connected
component, 2,896 (85,204) for projects the four smaller strongly connected components and 1,419 (73,532) for
projects in other projects in the giant component.

Group # of
projects

Mean #
downloads

Median #
downloads

degree Cpp

Strongly Connected Component40
 169 120,241 6,491 28.10 13.85

4 smaller strongly connected components 170 61,802 796 22.82 13.62

Other Projects in Giant Comp. 18,358 41,859 318 6.07 3.75

Table 6: Strongly Connected Components vs. Other Projects in Giant Component.

Observation 10: Strong ties matter. There is a large difference in the median (and the average)
number of downloads between projects in the largest strongly connected component, projects in
the four smaller strongly connected components and other projects in the giant component.

7. Conclusion
Knowledge spillovers are an important part of any learning or an R&D process. There

are two possible mechanisms that facilitate such spillovers. One possibility is that an individual

(or a firm) observes the outcome of an R&D effort of another individual, i.e., new technology or

a patent, and learns about its own R&D process. A more direct mechanism is the interaction

between different individuals who communicate with their colleagues, exchange emails, switch

jobs and projects and collaborate in different research ventures. The first type of spillover is

easier to model as a dynamic process in which any advance or success involving one project

positively affects the success of related projects. The second type of learning spillover crucially

depends on the "collaboration" network of interaction among individuals who are involved in the

learning process. The OSS project network provided a unique opportunity for examining the

effect of the properties of both the project network and the contributor network on the success of

different projects. An important additional step would be to open the "black box" of the OSS

projects, attempting to collect data on actual communication among team members, and

(controlling for the structure of the collaboration network), investigate the relationship between

actual communication among team members and the success of different projects.

29

40 We have full data for 169 projects in the largest strongly connected component, and full data for 170 projects in
the four smaller strongly connected components.

30

References
Angrist, J., and K. Lang, (2004), "Does School Integration Generate Peer Effects? Evidence
from Boston's Metco Program," American Economic Review, 94:1613-34.

Ahuja G., (2000),"Collaboration Networks, Structural Holes, and Innovation: A
Longitudinal Study," Administrative Science Quarterly, 45: 425-455.

Ballester, A. Calvo-Armengol, A., and Y. Zenou (2006) "Who's Who on Networks: Wanted the
Key Player" Econometrica, Vol.74 (5), 1403-1417.

Calvo-Armengol A., E. Patacchini and Y. Zenou (2008) "Peer effect and social networks in
education" Review of Economic Studies, forthcoming.

Calvo-Armengol, A. and M. Jackson (2004), "The effect of Social Networks on Employment
and Inequality", American Economic Review, Vol. 94(3) 426-454.

D' Aspermont, C. and A. Jacquemin (1988), "Cooperative and Noncooperative R&D in Duopoly
with Spillovers", American Economic Review, 78(5), 1133-1137.

Freeman, L. (1979), “Centrality in Social Networks: Conceptual Clarification.” Social Networks,
1: 215-239.

Goeree, J.K., M.A. McConnell, T. Mitchell, T. Tromp and L. Yariv (2007), "Linking and Giving
Among Teenage Girls", Working Paper, Cal Tech.

Goyal, S. (2007), Connections: An Introduction to the Economics of Networks, Princeton
University Press.

Goyal, S., M. and J.L Moraga-Gonzalez, (2001), “R&D Networks,” Rand Journal of Economics
32: 686-707

Goyal, S., M. J. van der Leij and J.L Moraga-Gonzalez, (2006), "Economics: Emerging Small
World" Journal of Political Economy, 114, 403-412.

Greene, W., (1993), “Econometric Analysis, Second Edition. New York: MacMillan Publishing
Company.

Grewal R, Lilien, G., and G. Mallapragada (2006), Location, location, location: How network
embeddedness affects project success in Open Sources Systems? Management Science, 52(7):
1043-56.

Griliches, Z., (1986), “Economic Data Issues,” in Handbook of Econometrics, Volume 3,
Griliches, and M. Intriligator, editors. Amsterdam: North Holland Publishing Company.

Harhoff, D., J. Henkel, and E. von Hippel (2003), “Profiting from voluntary spillovers: How
users benefit by freely revealing their innovations, Research Policy 32: 1753-1769.

31

Hertel, G., Niedner, S. and S. Herrmann (2003), “Motivation of software developers in open
source projects: An internet-based survey of contributors to the Linux kernel,” Research Policy,
32, 1159-1177.

Ioannides, Y.M. and L. Datcher-Loury (2005), "Job Information Networks, Neighborhood Effect
and Inequality" Journal of Economic Literature, Vol. 42(4), pp. 1056-1093.

Jackson, M.O., (2006), “The Economics of Social Networks,” In Proceeding of the 9th World
Congress of the Econometric Society (ed. R. Blundell, W. Newey and T. Persson). Cambridge
University Press.

Jackson, M.O. (2008), "Social Networks in Economics", forthcoming in the Handbook of Social
Economics (edited by Benhabib, Bisin and Jackson), Elsevier.

Jackson, M. and L. Yariv (2007), "The Diffusion of Behavior and Equilibrium Structure on
Social Networks" American Economic Review (papers and Procedures).

König, M., Battiston, S., Napoletano, M., and F. Schweitzer (2008), ‘The efficiency and
evolution of R&D networks’, CER-ETH Working Paper No. 08/95.

Lakhani, K., and R. Wolf (2005), “Why Hackers Do What They Do: Understanding Motivation
and Efforst in Free Open Source Projects, In: Feller/Open, J. Fitzgerland, S. Hissam, K. Lakhani
(eds.), Perspectives on Free and Open Source Software, MIT Press, Cambridge.

Lerner, J., and J. Tirole (2002), "Some Simple Economics of Open Source" Journal of Industrial
Economics, 52: 197-234.

Manski, C., (2000), "Economic Analysis of Social Interactions," Journal of Economic
Perspectives, 14:115-36.

Mobius, M. and A. Szeidl (2007), "Trust and the Social Collateral" Working Paper, Harvard
University.

Raymond, E. (2000), “The Cathedral and the Bazaar", available at http://www.catb.org
/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

Rysman, M., (2004), "Competition between Networks: A Study of the Market for Yellow
Pages," Review of Economic Studies, 71:483-512.

Sacerdote, B., (2001) "Peer Effects with Random Assignment: Results for Dartmouth
Roommates," Quarterly Journal of Economics, 116:681-704.

Stallman, R., (1999), “The GNU Operating system and the Free Software Movement,” in
Dibona, C., Ockman, S., and M. Stone editors, Open Sources: Voices from the Open Source
Movement, O’Reilly, Sepastopol, California.

Wasserman, S., and K. Faust, (1994), Social Network Analysis: Methods and Applications,
Second Edition. New York and Cambridge, ENG: Cambridge University Press.

32

Appendix A: Tables

Table A1: Descriptive Statistics for 66,511 Projects with data all variables

VARIABLE MEAN STD. DEV. MIN MAX

Projects Not in the Giant Component (N= 47,814)
Downloads 10,959 938,658 0 2.00e+08
years_since 2.70 1.67 0 6.64
count_topics 1.51 0.81 1 7
count_aud 1.21 0.69 0 3
count_op_sy 2.08 1.58 1 21
count_trans 1.27 0.92 1 40
ds_1 0.25 0.43 0 1
ds_2 0.20 0.40 0 1
ds_3 0.20 0.40 0 1
ds_4 0.26 0.44 0 1
ds_5 0.21 0.41 0 1
ds_6 0.02 0.12 0 1
Inactive 0.02 0.14 0 1
Cpp 1.61 1.52 1 42
Degree 1.18 2.14 0 23
Star 0.08 0.28 0 1

Projects in the Giant Component (N= 18,697)
Downloads 42,751 1,062,802 0 1.18e+08
years_since 3.63 1.70 0.08 6.65
count_topics 1.65 0.89 1 7
count_aud 1.34 0.70 0 3
count_op_sy 2.25 1.69 1 22
count_trans 1.38 1.66 1 45
ds_1 0.22 0.42 0 1
ds_2 0.17 0.38 0 1
ds_3 0.21 0.41 0 1
ds_4 0.30 0.46 0 1
ds_5 0.29 0.45 0 1
ds_6 0.03 0.17 0 1
Inactive 0.03 0.16 0 1
Cpp 3.84 6.72 1 338
Degree 6.26 8.53 1 299
Betweenness 0.00028 0.0015 0 0.12
Closeness 0.14 0.021 0.061 0.22
Star 0.45 0.49 0 1

Table A2: Correlation among all centrality variables (Giant Component: N=18,697)

 Lcpp degree lbetween lcloseness star

Lcpp 1.00

Ldegree 0.49 1.00

Lbetween 0.71 0.64 1.00

Lcloseness 0.26 0.41 0.36 1.00

Star 0.17 0.74 0.26 0.27 1.00

Table A3: Robustness Regressions:

Dept Variable:
Ldownloads

Robustness Regression
from 4.4.1

Robustness Regression
from 4.4.3

Robustness Regression
from 4.4.4

Independent Variables Coeff. T-stat Coeff. T-stat Coeff. T-stat
Constant 5.75 13.35 6.21 14.55 8.51 16.29

lyears_since 1.08 11.18 0.91 11.40 1.06 10.97
lcount_topics -0.06 -1.31 -0.06 -1.12 -0.06 -1.23
lcount_trans 0.42 9.61 0.44 8.83 0.41 9.39
lcount_aud 0.21 2.65 0.46 5.62 0.18 2.28

lcount_op_sy 0.26 7.91 0.26 6.62 0.26 7.94
ds_1 -0.46 -6.83 -0.75 -6.23 -0.46 -6.88
ds_2 -0.57 -7.31 -0.52 -4.80 -0.57 -7.68
ds_3 -0.27 -4.35 -0.23 -2.72 -0.28 -4.44
ds_4 0.19 3.45 0.18 2.41 0.18 3.24
ds_5 0.75 12.99 0.54 6.92 0.73 12.80
ds_6 0.73 7.00 0.45 3.06 0.72 6.89

Inactive -0.018 -0.12 0.02 0.11 -0.041 -0.28
Lcpp 0.76 22.21 0.63 19.30 0.59 15.38

Ldegree 0.19 5.07 0.0038 0.09 -0.019 -0.43
lcloseness 0.71 3.28 0.54 2.37 0.45 2.08

lbetweenness 0.30 9.21
of Observations 6,397 4,086 6,397
Adjusted R-squared 0.28 0.25 0.29

33

Project #36: High
degree, low betweenness

Project #81: High betweenness, relatively low degree

Figure 2: Projects in strongly connected component

34

