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Introduction

This thesis is concerned with the construction of bounded-error finite-difference numeri-
cal schemes, for initial boundary value problems (IBVP), on complex, multi-dimensional
shapes. Applications where such problems arise are, among others, heat transfer, acous-
tic and electro-magnetic wave propagation and fluid dynamics. In constructing numer-

ical schemes for these problems some difficulties may arise. Some of them are:

1. Imposing stable boundary conditions: Close to the boundary one-sided approxima-
tions have to be used. These approximations have to be stable, fulfill the boundary

conditions and maintain the global accuracy of the scheme.

2. Irregular domains: In multi-dimensional domains the boundary may not necessar-

ily coincide with the nodes of the mesh.

3. Long time wntegration: The error may grow rapidly in time even when the scheme

is stable in the classical sense.

4. Low wiscosity: For some schemes large numerical oscillations may occur when the

boundary-layers are not resolved.

5. Lack of 'modularity’: Suppose we have two differentiation matrices D, and D, in
the z and y directions respectively, all the eigenvalues of which have non positive
real part (i.e. they are strictly stable, see the definition below). The sum of these
matrices will not necessarily preserve this virtue. This is an example of lack of

modularity.

In this thesis a method is presented that allows one to construct finite-difference schemes

which resolve some of these difficulties.



The standard way to construct finite-difference schemes that numerically solve a
PDE, or a system of PDE’s, on a given mesh is to find a consistent approximation to
the given problem and then prove that the approximation is stable. Lax’s equivalence
theorem insures that the scheme converges, i.e. that for a fixed time 7' the numerical
solution to the scheme converges to the analytic solution of the differential problem as
the mesh size h — 0, see for example [33], [13] . Note that even when the scheme is stable
the error may grow exponentially in time, see [5]. Additional types of stability are strong
stability which means that an estimate of the solution at any given time is obtained in
terms of the forcing function, initial data and boundary data; and strict stability which
means that the energy dissipation introduced by the boundaries is essentially preserved
by the numerical scheme. In the case of semi-discrete schemes strict stability implies
that all the eigenvalues of the coefficient matrix of the corresponding ODE system have
non positive real part.

The stability analysis for fully-discrete algorithms can be a difficult task. The anal-
ysis is somewhat simpler when carried out for semi-discrete schemes. If one converts a
semi-discrete scheme to a fully-discrete one by using Runge-Kutta or other multi-step
methods, then stability is assured under conditions given in Kreiss and Wu [22] or Levy
and Tadmor [23].

There are essentially two methods to analyze stability of finite-difference approxi-
mations of PDE’s with non-periodic boundary conditions: the energy method and the
Laplace transform method. The first paper in the area of the Laplace transform method
was written by Goganov and Ryabenkii [14] in 1963. This gave necessary normal-mode
conditions for stability, analogous to the Von Neumann necessary condition for pure ini-
tial value problem. The sufficient condition was given by Kreiss [18] and the complete
theory for dissipative schemes was presented in [19]. Extentions of Kreiss results, includ-
ing some nondissipative and implicit methods were in Osher [30]. A general stability
theory, for hyperbolic IBVP, based on the Laplace transform method, for the fully-
discrete case, was presented by Gustafsson, Kreiss and Sundstrém (G.K.S.) [12]. This
was a breakthrough in the study of the stability analysis of finite-difference schemes.
Later, the theory was generalized to the semi-discrete case by Strikwerda [37]. In [13]
Gustafsson, Kreiss and Oliger prove that, under mild assumptions, G.K.S. stability



leads to strong stability. It should be realized however that the above theories are
one-dimensional in nature. In the d-dimensional case they are applicable only if d — 1
boundary conditions are periodic. Even then the application of this theory in several
space dimensions is complicated. In fact, to my knowledge, there is only one example of
this type of stability analysis carried out for two-dimensional 2 x 2 hyperbolic systems,
see [4].

Energy methods for stability analysis were introduced in the 50’s, see [33]. In the 70’s
Kreiss and Scherer [20] [21] proved the existence of difference operators approximating
a hyperbolic PDE using a summation by parts formula and weighted norms. They also
used a projection operator to impose the boundary conditions on semi-discrete schemes.
Lately this technique was generalized by Olsson [28] [29] and Strand [35][36] who proved
strict stability for a larger class of operators and orders of accuracy. Another approach
to impose boundary conditions and to insure strict stability was presented by Carpenter,
Gottlieb and Abarbanel [8] who used simultaneous approximation terms (SAT) to treat
boundary conditions. Using this technique high order implicit schemes were constructed.

Many problems that arise from applications are concerned with solving PDE.’s in
complex multidimensional geometries. Typical problems are fluid flow and electro-
magnetic wave propagation. Some of the methods which attack this problems are un-
structured grids, body-fitted coordinates, and overlapping meshes. These methods are
successfully applied in CFD. However, they suffer from two major drawbacks - the length
of time it takes to generate the grid, measured in weeks for typical large scale CFD com-
putation, and the complexity added to the computation due to the fact that the PDE’s
have to be transformed to the new coordinate system. Another approach is to use a
cartesian grid. This method uses a ’simple’ cartesian grid, but requires a complex treat-
ment at boundaries which do not necessarily coincide with grid nodes or cell-surfaces.
Papers describing the use of cartesian grids using finite difference algorithms and finite
volume methods were published in the past twenty years, see for example [32] [31] [9]
[11]. Lately there is a growing interest in cartesian grid methods combined with mesh
refinement. One of the goals of current research is to automate grid generation, see for
example [27] [6] [24] [25] and also some of the home-pages devoted to cartesian grids,
e.g., Dr. John Melton :http://oldwww.nas.nasa.gov/~melton/cartesian.html and Capt.



Michael Aftosmis: http://george.arc.nasa.gov/~aftosmis/. Currently there are several
industrial CFD codes that use cartesian grids, for example TRANAIR and MGAERO.
The Finite-Difference Time-Domain (FDTD) method, was first applied by Yee in 1966
[38] to the problem of solving numerically Maxwell’s equations. Yee used two cartesian
grids, an electric field E-grid and a magnetic field H-grid which are offset from each
other both spatially and temporally. A leap-frog scheme was utilized to advance the
fields in time. When FDTD methods are applied to problems on complex geometries,
“staircased” or “lego-type” approximations are used to represent the boundaries. These
approximations to the geometry may, in certain cases, lead to significant errors [7] [15].
Mesh refinement, as well as other approaches, are used to overcome this difficulty and
to resolve small-scale structures, such as a narrow slot; see [26] [17]. See also the FDTD
survey paper [34].

One of the difficulties that may arise in the analysis of finite-difference schemes is that
some of the properties of the discrete operators are not necessarily preserved when the
operators are added. For example, even if we have strictly stable differentiation matrices
D, and D, (i.e. all their eigenvalues have non positive real part), it is not assured that
the representation of 8/8z + 0/0y by D, + D, will possess only eigenvalues with non
positive real part. This implies that it is the matrix D, + D, that should be checked
for stability. This analysis may be extremely complicated on complex multidimensional
geometries. Thus arises the motivation to construct 'modular’ schemes, in the sense
that the properties of the operators that are essential for stability, or convergence, are
preserved when the operators are added.

In this work a methodology for constructing finite-difference semi-discrete schemes,
for initial boundary value problems (IBVP), on complex, multi-dimensional shapes is
presented. The implementation of this methodology for constructing finite-difference
approximations for various operators and orders of accuracy is discussed and selected
numerical verifications are presented.

Unlike the 'standard approach’ where convergence is proven by using stability, here
we prove convergence directly, by deriving an equation for the error and bounding the
error norm. The standard requirement of stability is replaced by error boundness, which

means that the error norm is bounded by a function of the time ¢, the mesh size h and



the exact solution to the differential problem w (typically a Sobolev norm of u), i.e.
| € ||< F(u,h,t), F <ooVt<oo, F — 0ash— 0. Throughout this work we
use the error boundness in a stricter sense. We require that || € ||, the Ly norm of ¢,
be bounded by a “constant” proportional to A™ (m being the spatial order of accuracy)
for all ¢ < 0o, or at most grow linearly in time, the time coeflicient being proportional
to ™. By Lax’s equivalence theorem, a scheme which possesses an error bounded by
a linear growth in time is strictly stable. Additionally, the use of error-boundedness
analysis enables us not only to prove convergence directly, but also to get an estimate
on the actual error generated by the scheme.

The method presented here for building up semi-discrete schemes on complex, multi-
dimensional shapes has as its starting point the construction of one dimensional schemes
on a uniform grid with boundary points that do not necessarily coincide with the ex-
tremal nodes of the mesh. The boundary conditions are imposed using simultaneous
approximation terms (SAT) which are a generalization of the penalty method presented
in [8]. The 1-D schemes are built in a way that the coefficient matrix of the correspond-
ing ODE system which represents the error evolution in time is negative definite (N.D.)
and bounded away from 0 by a constant independent of the size of the matrix, or is at
least non-positive definite (N.P.D.). These properties, N.D. or N.P.D., enable us to prove
that the scheme is error-bounded by a “constant”, or error-bounded by linear growth
in time, respectively. Since a sum of two negative (non-positive) definite matrices is
a negative (non-positive) definite matrix, a multidimensional scheme can be built by
adding differentiation operators each of which is negative (non-positive) definite. This
is the sense in which such schemes are 'modular’.

The error boundness proof and details of constructing multidimensional schemes on
complex shapes are given in chapter 1.

In chapter 2 a 4*"-order accurate scheme is developed for solving the diffusion equa-
tion in one or more dimensions, on irregular domains. The scheme is constructed on
a rectangular grid using the method presented in chapter 1. Numerical examples in
2-D show that the method is effective even where standard schemes, stable by tradi-

tional definitions, fail. The general theory and the results presented in this chapter were

published in [2].



In chapter 3 the methodology presented in chapter 1 is used to develop second
order accurate schemes which solve multi-dimensional linear hyperbolic and diffusion
equations on complex shapes. These algorithms are used to solve the linear advection-
diffusion equation, including the low viscosity case. Numerical examples show that
the method can give a good approximation to the solution outside the boundary-layer
even when the viscosity is low, and the grid is coarse with respect to the boundary
layer thickness. Standard schemes converge much slower and generate oscillations. The
material presented in this chapter was published in [3].

In chapter 4 the methodology presented in chapter 1 is adopted to construct schemes
for parabolic equations and systems containing mixed-derivatives. A second order
accurate bounded-error scheme is constructed to represent a scalar mixed-derivatives
parabolic operator. This scheme is then generalized to solve the diffusion part of the
Navier-Stokes equations in two and three space dimensions. This generalization may
also be applicable to other parabolic systems.

In chapter 5 the same method is adopted to solve the wave equation. The difficulties
that arise from attempts to apply the method presented in chapter 1 naively are dis-
cussed, and a way to resolve them and to solve the problem is proposed. Consequently
we have a second-order accurate bounded-error scheme to solve the wave equation on

complex shapes.



Chapter 1

General theory and description of
the method

1.1 The one dimensional case

We consider the following problem

g—’: = L(u) + f(z,t); Tp<z<Tg t>0 (1.1.1a)
u(z,0) = uo(z) (1.1.1b)

Br(w(Tp,t)) = gr(t) (1.1.1c)
Br(u(Tg,t)) = gr(t) (1.1.1d)

Where L, By, Bg are linear differential operators. For example: in the inhomoge-
neous diffusion equation with Dirichlet boundary condition L(u) = kg%—l—f(m, t) ;k>0,
Br(u(T'z,t)) = u(l'g,t), and Bg(u(T'r,t)) = u(Cg,t). In the inhomogeneous hyper-
bolic equation with Dirichlet boundary condition L(u) = ag—;‘ + f(z,t) ; for a < 0,
Br(u(T'z,t)) = w(l'g,t), and no boundary condition is given on the right side.

Let us spatially discretize (1.1.1a) on the following uniform grid:

| | | | |

% % %3 B Xui N2 A K

Figure 1.1: One dimensional grid.



Note that the boundary points do not necessarily coincide with z; and zy. Set ;41 —
zj=h,1<j<N-1; 21 -Tp=~vh, 0<~v <1, T'p—2zy=7grh, 0<yr <1

The projection of the exact solution u(z,t) to (1.1.1) onto the above grid is u;(t) =
u(zj,t) 2 u(t), similarly f;(t) = f(z;,t) 2 f(t) is the projection of the inhomogeneous
term. Let D be a matrix representing numerical approximation to the differential op-
erator L at internal points, without specifying yet how it is being built. Then we may
write

%mﬂ:imuy+B+f+T (1.1.2)

where T is the truncation error due to the numerical differentiation. The boundary
vector B has entries whose values depend on gy, gr, vr,Yr 1n such a way that D-+B
represents the differential operator L everywhere to the desired accuracy. The standard
way of finding a numerical approximate solution to (1.1.1) is to omit T from (1.1.2) and
solve

%v(t) _ Dv(t)+ B +f (1.1.3)

where v(t) is the numerical approximation to the projection u(t). An equation for the

solution error vector, €(t) = u(t) — v(t), can be found by subtracting (1.1.3) from
(1.1.2):
%ezbdﬂ+ﬂﬂ (1.1.4)

Unlike the 'standard approach’ where convergence is proven by using stability, here
we prove convergence directly, by deriving an equation for the error and bounding the
error norm. The standard requirement of stability is replaced by error boundness which
means that the error norm is bounded by a function of the time ¢, the mesh size h and
the exact solution to the differential problem w (typically a Sobolev norm of u), i.e.
| € ||< F(u,h,t), F<ooVt<oo, F —0ash— 0. Throughout this work, our
requirement for error boundness is that either || € ||, the Ly norm of €, be bounded by
a “constant” proportional to h™ (m being the spatial order of accuracy) for all t < oo,
or at most grow linearly in time, the time coefficient being proportional to h™. Note
that this requirement is more severe than strong stability, which allows for exponential
temporal growth of the error.

In many cases it can be shown that if D is constructed using central differencing in



a standard manner, i.e., away from the boundaries the numerical second derivative is
symmetric and the numerical first derivative is antisymmetric, (and near the boundaries
one uses “non-symmetric” differentiation), then there are ranges of yg and ~z, for which
D is not negative definite. Since in the multi-dimensional case one may encounter all
values of 0 < yz,vg < 1, this is unacceptable.

The “common practice” is to use Dv-+B to approximate Du+B. Here, however, the
basic idea is to use a differentiation matrix D to approximate the differential operator
L everywhere and use a penalty-like term in the numerical algorithm to represent the
boundary conditions. This way of imposing the boundary conditions gives us more
degrees of freedom in the construction of the scheme. Special properties of the scheme,
like non-positive definiteness in Ly norm, can now be achieved using these extra degrees
of freedom. This idea of using penalty-like term was presented in the SAT procedure of
ref [8]; here, however, it will be modified and applied in a different manner.

Note first that the solution projection u;(t) satisfies, besides (1.1.2), the following
differential equation:

du

— =Du+f+T, 1.1,
o = Du+f+ (1.1.5)

where now D is indeed a representation of L, that does not use the boundary values, and
therefore T, # T but it too is a truncation error due to differentiation.

Next let the semi-discrete problem for v(¢) be, instead of (1.1.3),

dv
E = [DV—TL(ALV—gL) —TR(ARV—gR)] —I-f (116)
where gz, = (1,...,1)Tgr(t); gr = (1,...,1)Tgr(t), are vectors created from the left
and right boundary values as shown. The matrices Ay and Ag are defined by the

relations:

Apu = gp — Ty; Apu = gr — Tk, (1.1.7)

i.e., each row in Ar(Ag) is composed of the coeflicients extrapolating u to its boundary

value gr(gr), at I't(T'r) to within the desired order of accuracy. ( The error is then
TL(Tg) ).

The diagonal matrices 7, and 75 are given by

1, = diag (70, TLyy - - - » TLy); r = diag (Tr,, TRys---» TRy) - (1.1.8)



Though in principle the penalty terms (Arv — gr) and (Agv — ggr) are added to each
point, in practice they are added just near the boundaries, i.e. most of the 7;,;s and 7g;s

are zero. Subtracting (1.1.6) from (1.1.5) we get

de€

%:[DG—TLALG—TRAR 6]—|—T1 (119)

where
T =T — 7Ty —7rTr
Taking the scalar product of € with (1.1.9) one gets:

1d

o d | el = (€(D—1AL—TrRAR) €) + ( €,Ty)

= (e,Me€)+ (€T (1.1.10)
We notice that ( €, M €)is ( €,(M + MT) €)/2, where
M =D —1,A; — TRAR. (1.1.11)
If M + MT can be made negative definite then
(e,(M+MT)e€)/2< —co| €|>, (co>0), (1.1.12)

where —cy is an upper bound on the largest eigenvalue of M + M7T. Equation (1.1.10)
then becomes
1d

S lelP< —a e | +( T,

and using Schwarz’s inequality we get after dividing by || € ||
d
5 lells—cllel+] T

and therefore (using the fact that v(0) = u(0))

(SN

lell< (1—et) (1.1.13)

where the “constant” || Ty ||m= maxo<r<¢ || T1(7) ||. This “constant” is function of
the exact solution v and its derivatives.
If we indeed succeed in constructing M such that M + M7 is negative definite,

with ¢o > 0 independent of the size of the matrix M as it increases, then it follows

10



from (1.1.13) that the norm of the error will be bounded for all ¢ by a constant which
is O(h™) where m is the order of the spatial accuracy of the finite difference scheme
(1.1.6). The algorithm is then a bounded error scheme, and as h — 0, v(t) converges to

u(t).

When ¢o = 0, as in the case of hyperbolic equations, the differential inequality is
Clel<im (11.14)
— | € 1.
dt =0

leading to
| el < Tilmt, (1.1.15)

i.e. alinear growth in time, a result typical of hyperbolic systems; convergence, however,

is unaffected.

1.2 The multi dimensional case

In this section we show how to use a one-dimensional scheme, whose properties were

described in the previous section, as a building block for multi-dimensional schemes

of the type % = Zle LE)(u) + f(x,t); x = (1,...,24) € R% TFor the sake of
simplicity we describe in detail the construction in the two-dimensional case (d = 2). A
brief explanation on how to construct a multi-dimensional schemes in d dimensions is
given at the end of this section. The more general case, where the evolution operator
contains mixed derivatives, will be examined in chapter 4.

We consider the following inhomogeneous linear differential equation, with constant
coefficients, in a domain (). To begin with we shall assume that {} is convex and has

a boundary curve 8Q € C2. The convexity restriction is for the sake of simplicity in

presenting the basic idea; it will be removed later. We thus have

((99_1: = L®(u) + LW () + f(z,y,t); =zy€ Q; t>0 (1.2.1a)
u(af:,y,O) = uo(m,y) (121b)
B(u(z,y,t))|sa = us(t) (1.2.1c)

We shall refer to the following grid representation:

11
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Figure 1.2: Two dimensional grid.

We have Mg rows and Mg columns inside 2. Each row and each column has a discretized
structure as in the one 1-D case, see Figure 1.2, with Az not necessarily being equal
to Ay. Let the number of grid points in the k" row be denoted by R and similarly
let the number of grid points in the j*! column be C;. Let the solution projection be

designated by Ujx(t). By U(t) we mean, by analogy to the 1-D case,

U(t) = (’U/l,l,’u/g,l,...,’U/Rl,l;’u/l,g,’u/z,z,...,’U/Rz,z;...;’U/l,MR,’U/Z,MR,...’U/RMR,MR)
= (up,uy,...,up). (1.2.2)
One should note that the x-position of j = 1 is different on different rows ( i.e.

different k’s).

Thus, we have arranged the solution projection array in vectors according to rows,
starting from the bottom of Q. The projection of the forcing function, F(t), was also
arranged in the same manner.

If we arrange this array by columns (instead of rows) we will have the following

structure
U(C)(t) = (ul,l,ul,z, ceey UL, 0y U211, U2, -, U053 - - - s UMG, 1, UMG,25 - - - ,UMC,CMC)
c c c
= (@, ui)) (1.2.3)

12



Since U(©)(t) is just a permutation of U(t), there must exist an orthogonal matrix
P such that
U©(t) = PU. (1.2.4)

If the length of U(¢) is £, then P is an £ x £ matrix whose each row contains £ — 1 zeros

and a single 1 somewhere.

The differential operator L(®) in (1.2.1a) is represented on the k" row by the differ-
(=)

entiation matrix D; ', whose structure is the same as that of D in (1.1.5). Similarly let

(v)

L®) be given on the j* column by D;”, whose structure is also given by (1.1.5). With

this notation the projection of L(*) + L) is:

(L@ + LW uy(t) = [D@U + DWUE 4 TE) + TW] (1.2.5)

ij
where D) and D are (£ x £) matrices with a block structures shown in (1.2.6).
Dgz) Dgy)
‘ (1.2.6)
D) o
T and T are the truncation errors associated with D and DW) | respectively.

We now call attention to the fact that D*) and D® do not operate on the same vector.

This is fixed using (1.2.4):
(L@ + LW uy(t) = (L) + L) U = (D@ + PTDW PYU 4 T + PTTY  (1.2.7)
Thus (1.2.1a) becomes, by analogy to (1.1.5),
U _ pe) 4 pTpw () ;. pTTW
E:(D +P"D¥P)U+ (T® + PPTY)+ F (1.2.8)
Before proceeding to the semi-discrete problem let us define:

Mk(:m) _ DI(‘:D) o TLkALk _ TRkARk (129)

where 77, , Az, are the 71 and Ay defined in section 1.1, appropriate to the k*® row;

similarly for 7z, and Ag,. In the same way, define

MP = D¥ — 15 Ap, — 7, Ar, (1.2.10)

7

13



where the subscripts B and T stand for bottom and top respectively.

We can now write the semi-discrete problem by analogy to (1.1.6)

av

- = (M@ 4 PTMWPYV 4+ GE) 4 PTGW) 4+ F (1.2.11)

where V is the numerical approximation to U;

Ml(z) (x) Ml(y) (v)
M,* MY
M=) — 2 MW = 2 ;(1.2.12)
M) My
and
G(z) = [(qu 8L, + TR, gR1)7 SR (TLkng + TngRk)7 SRR (TLMRgLMR + TRMRgRMR)] )
Gl — [(TBlgB1 +7,81,), - - s (TB].gB]. + TTngj), e, (TBMchMc + TTMchMc)] .

(1.2.13)

Subtracting (1.2.11) from (1.2.8) we get in a fashion similar to the derivation of (1.1.9):

dE

- = (M) + PTMWP)E + T, (1.2.14)
where E = U — V is the two dimensional array of the errors, ¢;;, arranged by rows as a
vector. T, is proportional to the truncation error.

The time rate of change of || E ||? is given by

S B = (B, (M® + PTMOP)E) + (B, Ty) (1.2.15)

The symmetric part of M®) 4+ PTMU P is given by

%[(M(-ﬂ + M@ 4 PT(ME) 4 M) P (1.2.16)

INote that when this scheme is used in practice, the 1-D algorithem (1.1.6) is implemented on each
row, to compute the numerical approximation to LX), and on each column, to compute the numerical
approximation to L(¥), Therefor the scheme may be written as:

% = M@V + G+ MOV L gW 1 F| |
ij

Writing the scheme in the manner of equation (1.2.11), enables us to use standard linear-algebra
manipulations, and thus make the proof easier.

14



Clearly M@ + M@ and M® + M®” are block-diagonal matrices with typical
blocks given by M,gz) + M,gz)T and M}y) + M}y)T. We have already shown in the one
dimensional case that each one of those blocks is either negative definite and bounded
away from zero by ¢y, or is non-positive definite. Therefore the operator (1.2.16) is also
negative definite and bounded away from zero, or non-positive definite. The rest of the
proof follows the one dimensional case and thus the norm of the error, || E ||, is bounded
by a constant, or, in the hyperbolic case, at most grows linearly with ¢.

If the domain ) is not convex or simply connected then either rows or columns,

or both, may be “interrupted” by 0f2. In that case the values of the solution on each

“internal” interval (see Figure 1.3 below) are taken as separate vectors.

Uj ©.(®

j

Figure 1.3: Two dimensional grid, non convex domain.

Decomposing “interrupted” vectors in this fashion leaves the previous analysis un-
changed. The length of U (or U(©)) is again £, where £ is the number of grid nodes
inside €. The differentiation and permutation matrices remain £ x £. Note that adding
more “holes” inside 0f) does not change the general approach.

If the domain € R?, in practice algorithm (1.1.6) is implemented on each direction

z,, » = 1,...,d, in the same way it was implemented for each row, to compute in the
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two-dimensional case, see footnote to equation (1.2.11). In order to prove the conver-
gence of this algorithm we write the scheme as in equation (1.2.11), using the proper
permutation matrices. Then we get a bound on on the error norm as was done in the
two-dimensional case.

The following chapters describe how to construct M, see (1.1.11), for various op-
erators and orders of accuracy, so that the basic assumption of the theory, i.e. that
M is either negative definite or non-positive definite is fulfilled. Selected numerical

verifications are also presented.
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Chapter 2

The diffusion equation

This chapter is concerned with 4"-order approximations to the the diffusion equation
in one and two dimensions, on irregular domains, using the method presented in chapter
1.

In section 2.1 we develop the one-dimensional semi-discrete algorithm that approx-
imate second derivative to 4*P-order accuracy. This scheme satisfies the requirement
presented in chapter 1, therefore the scheme is bounded by a “constant” and can be
generalized to the multi-dimensional case, i.e. the Laplace operator.

Section 2.2 presents numerical results in two space dimensions demonstrating the
error boundeness of the scheme, constructed in section 2.1. These results show that the

method is effective even where standard schemes, stable by traditional definitions, fail.

2.1 Construction of the scheme

We consider the following problem

%:V%—I—f(m,t); Ip<z<Tg t>0, k>0 (2.1.1a)
u(z,0) = uo(z) (2.1.1b)
u(Tz,t) = go(t) (2.1.1¢)
u(Tg,t) = gr(t) (2.1.1d)

and f(z,t) € C*
As in chapter 1 let us discretize (2.1.1a) spatially on the following uniform grid:
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| | | | | | | |
I I I I I I I I I

% % %3 B Xui N2 v X

Figure 2.1: One dimensional grid.

Note that the boundary points do not necessarily coincide with z; and zy. Set ;41 —
zj=h,1<j<N-1; 21 -Tp=~vh, 0<~v <1, T'p—2zy=7grh, 0<yr <1
The projection of the exact solution u(z,t) to (2.1.1) onto the above grid is u;(t) =
u(zj,t) 2 u(t), similarly f;(t) = f(z;,t) 2 f(t) is the projection of the inhomogeneous
term. Let v(¢) be the numerical approximation to the projection u(t), given by equation

(1.1.6).

dv
= = [Dv — TL(ALV — gL) - TR(ARV - gR)] + f(t)
= Mv+ m.gr + Trgr + £(¢) (2.1.2)
where
du

== = Du +f(t) + T..
5 = Du+f(t)+

gr = (1,...,1)Tgr(t); gr=(1,...,1)Tgr(t), are vectors created from the left and

right boundary values as shown. The matrices A and Ag are defined by the relations:

Apu =gr — Ty; Arpu =gr — Thg,

i.e., each row in Ar(Ag) is composed of the coeflicients extrapolating u to its boundary

value gr(gr), at I't(T'r) to within the desired order of accuracy. ( The error is then
TL(Tg) ).

The diagonal matrices 7, and 75 are given by
1, = diag (T, TLyy - -+ » TLy); R = diag (Tr,, TRy, - - TRy)
The numerical solution error vector is given by,
€(t) = u(t) — v(t)
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where

and

T1 :Te—TLTL—TRTR.

The rest of this section is concerned with the case of m = 4, i.e, a spatially fourth

order accurate finite difference algorithm.

Let the n x n differentiation matrix, D, be given by

45 —154 214 -—-156 61 —10
10 —-15 —4 14 —6 1
-1 16 —30 16 -1
-1 16 =30 16 -1
-1 16 =30 16 -1

-1 16 —-30 16 -1
-1 16 —-30 16 -1
-1 16 —30 16 -1

—10 61 —156 214 —154 45

(2.1.3)

The upper two rows and the lower two rows represent non-symmetric fourth order
accurate approximation to the second derivative without using boundary values. The
internal rows are symmetric and represent central differencing approximation to u,, to

the same order. Note that D is not negative definite, and neither is the symmetric part

of %(D + DT) which is given by:
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In order to construct M we need to specify Ar, Ag, 71

follows:

where

Al —

e

The a’s are given by

90 —144 213
—144 30 12
213 12 —60
—156 13 32
61 -6 =2
—10 1 0

—156 61 —10
13 -6 1
32 -2 0
—60 32 -2

32 —60 32 —2

—2 32 —60 32 -2

—2 32 —60

—2 32

—2

0

1

~10

32 -2 0 1 -10
—60 32 -2 —6 61
32 —-60 32 13 —156
-2 32 —60 12 213
—6 13 12 -30 —144
61 —156 213 —144 90

and 7r. We construct Ay, as

Ap = AP 4 AL (2.1.4)
a; ay; az oy as 0 0
a; ay; az oy as 0 0
- , (2.1.5)
a; ay; az oy as 0 0
cp = diag [20a/71, 0,...,0] (2.1.6)
15 —10 10 =5 1 0 0
15 —10 10 =5 1 0 0
- (2.1.7)
15 —10 10 =5 1 0 0
25 35 5 1
- 142 99 o 9 3 L4
+ o + YL + 5L + YRL
13 3 1
= —(47L+§7§+§72+57}f)
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19 1
a3 = %L+zﬂ%+%2+~ﬁ (2.1.8)

4
4T Ty
o _= — — — — —
4 3’)’L 3’)’L 6’)’L 6’YL
I SN AP SR

Note that AL)v gives a vector whose components are the extrapolated value of v at z =

I'z (i-e., vr,(t)), to fifth order accuracy; while APy gives a vector whose components
represents (0°v;/0z°)h®. Since cp, (see 2.1.6) is of order unity, then Apv = (A&L) +
cLAgL))V represents an extrapolation of v to vr, to fifth order.

Before using Ar, in (2.1.2) we define 7.

TL = 121?diag[7'1,7'2,7'3,7'4,7'5,0,...,0] (2.1.9)
where
n o= 7120
T = (=94 —aom)/oy
3 = (113 —agm)/oy (2.1.10)
s = (=56 —oaum)/oy
5 = (11 —oagm)/ou

The right boundary treatment is constructed in a similar fashion, and the formulae

corresponding to (2.1.5) - (2.1.11) become:

Agp = AB) 4 cp ALR), (2.1.11)
0O ... ... 00 aAnN_4 GN_3 GN_2 OGN_-1 CON

Ar(xR) _ 0 ... ... 00 aAnN_4 GN_3 GN_2 OGN_-1 CON 7 (2112)
0O ... ... 00 aAnN_4 GN_3 GN_2 OGN_-1 CON

cr = diag[0,0,...,0, —20ay/71] (2.1.13)
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The o’s here are:

IO R BV SR
o = PP oA 19 54
N 1278 T 24 TR T TR 4R
13 3 1
ay_, = — (4’)’3 + ?’)’% + 5’)’% + 6’)’;12)
19 1
aN_y = 3’YR+I’7122‘|‘2’7?2+Z7;1?
4 7 2 7 3 1 4
an-3 = — |3 + 3R + R + R
1 N 1, N 1 4 N L,
anN_4 = — o7 1 24
N-4 A TR T o4 YR T 4R T 54 TR
TR = 12h2diag[0,---,TN_4,TN—3:TN—2:TN—17TN]’
TN_1 = ( 94 — an_ 1TN)/aN
-2 = (113 —any_s7n)/an
™~_3 = (—56— an_sTn)/an
TN_4 = (]_]_ — AN_ 4TN)/aN

0 0 01 -5 10 —-10 5 -1
0 0 01 -5 10 —-10 5 -1
60 ...01 -5 10 —-10 5 -1

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

Note that the extrapolating errors T, and Tg are only O(h®). Therefore the scheme

near the boundaries is third order accurate.

In order to show that the error estimate (1.1.13) is valid, i.e. the error is bounded

by a “constant”, it is sufficient to prove that l(M + MT) is negative definite, and its

eigenvalues are bounded away from zero. The proof is done by writing (M + MT) as

a sum of five matrices. One matrix is negative definite and the other are non-positive
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ones. The details are given in the appendix to this chapter, section 2.4, where it is
proven that %(M + MT) is indeed negative definite, and its eigenvalues are bounded
away from zero by (—n?/24), even as N — oo.

In the 2-D case the mesh size h becomes Az or Ay respectively, when used in

conjunction with D®) or D).

2.2 Numerical example
In this section we describe numerical results for the following problem:

0
5 = V(e + ) + £(,3,), (z,y) €Q, t>0, (22.1)

where 2 is the region contained between a circle of radius , = 1/2 and inner circle of

radius r; < 0.1. The inner circle is not concentric with the outer one. Specifically Q is

described by
{(—57+y—5)>2<1/4}n{(z— 6>+ (y—.5)°>(1-4§)%0<4§< .1} (2.2.2)

The geometry thus looks as follows:

y=0 \ T T — ‘ \
x=0 050.6 1 x

Figure 2.2:
The Cartesian grid in which €2 is embedded spans 0 < z,y < 1. We took Az = Ay,

and ran several cases with Az = 1/50, 1/75, 1/100.

23



The source function f(z,y,t) was chosen different from zero so that we could assign
an exact analytic solution to (2.2.1). This enables one to compute the error E;; =

U;; — V;; “exactly” (to machine accuracy). We chose v = 1 and
u(z,y,t) = 1 + cos(10t — 10z® — 10y?) (2.2.3)
This leads to

f(z,y,t) = 400(z® + y?) cos(10t — 10z* — 10y?)
— 50sin(10t — 102® — 10y°) (2.2.4)

From the expression for u(z,y,t) one obtains the boundary and initial conditions.

The problem (2.2.1), (2.2.2), (2.2.4) was solved using both a “standard” fourth order
algorithm and the new “SAT”, or “bounded error”, see footnote to equation (1.2.11).
The temporal advance was via a fourth order Runge-Kutta.

The standard algorithm was run for Az = 1/50 and a range of 0 < § < .01 (.09 <
r; < .1). We found that for § > .0017323, the runs were stable and the error bounded for
“long” times (10° time steps, or equivalently ¢ = 2). For 0 < § < .0017233 the results
began to diverge exponentially from the analytic solution. The “point of departure”
depended on §. A discussion of these results is deferred to the next section. Figures 2.3
to 2.5 show the Ly-norm of the error vs. time for different radii of the inner “hole”.

The same configurations were also run using the “bounded error” algorithm, and
the results are shown in figures 2.6 to 2.9. It is seen that for §’s for which the standard
methods fails, the new algorithm still has a bounded error, as predicted by the theory.

To check on the order of accuracy, the “SAT” runs (with § = 0) were repeated
for Az = Ay = 1/75 and 1/100. Figure 2.10, 2.11, and 2.12 show the logarithmic
slope of the Ly, L1 and Lo, errors to be less than —4; i.e., we indeed have a 4" order
method. That the slopes are larger in magnitude than 4.5 is attributed to the fact
that as Az = Ay decreases the percentage of “internal” points increases (the boundary
points have formally only 3™ oder accuracy). It is therefore possible that if the number
of grid points was increased much further, the slope would tend to —4. Lack of computer
resources prevented checking this point further. (For Az = 0.01, running 20,000 time
steps, t = 1.0, the cpu time on a CRAY YMP is about 5 hours). It should also be noted
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that the “bounded-error” algorithm was run with a time step, A¢, twice as large as the

one used in the standard scheme. At this larger At the standard scheme “explodes”

immediately.
err err
0.0003 0.0003
0.00025 0.00025
0.0002 0.0002
0.00015 0.00015
0.0001 0.0001 .
0.00005 : © : " 0.0000s
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2t 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2t
Figure 2.3: § = 0.0017325, Standard Figure 2.4: § = 0.0017323, Standard
scheme scheme
err err
140000 0.0003 : . :
120000 . 0.00025 . . <
100000 0.0002
80000
0.00015
60000
0.0001
40000
20000 0.00005
t 0 t
0.0002 0.0004 0.0006 0.0008 0.001 0.5 1 1.5 2 2.5 3 3.5 4
Figure 2.5: § = 0.0015, Standard Figure 2.6: § = 0, SAT scheme
scheme
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err err
0.0003 0.0003
0.00025 ' 0.00025
0.0002 0.0002
0.00015 0.00015
0.0001 0.0001
0.00005 0.00005
0 t 0

Figure 2.7: § = 0.0015, SAT scheme

Figure 2.8: § = 0.0017323, SAT scheme

err Log [L1]
Fit: 4.12882 - 4.64381 Log [N]
0.0003 -2.5
0.00025 ' -3
0.0002 -3.5
0.00015 4
0.0001 4t
0.00005
- Log [N
> 1.7 1.8 1.9 ‘\a\\\\\2.1 g (Nl
0 0.5 1 1.5 2 2.5 3 5 4t -s5.5

Figure 2.9: § = 0.0017325, SAT scheme

Figure 2.10: Order of accuracy L,

Log [L2] Log [max]
Fit: 4.41253 - 4.67035 Log[N] Fit: 4.88824 - 4.57438 Log[N]
-2.5 -2.5
-3 -3
-3.5 -3.5
-4 -4
4.5 -4.5
- Log [N - Log [N
> 1.7 1.8 1.9 2 2.1 .2 g ] > 1.7 1.8 1.9 2 2.1 gl
-5.5 -5.5

Figure 2.11: Order of accuracy L,

Figure 2.12: Order of accuracy Lo

A study of the effect of the size of At shows that the instabilities exhibited above by

the “standard” scheme are due to the time-step being near the C.F.L.-limit. The reason
for this strong dependence on the geometry is that the “standard” differentiation matrix
has entries which are O (1/(h%*y)). In the “SAT” differentiation matrix the entries are
O (1/(h*(1 +))). This instability problem could probably be solved also by using an
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implicit method for the time integration.

2.3 Conclusions

(1)

(i)

(ii)

The theoretical results show that one has to be very careful when using an algo-
rithm whose differentiation matrix, or rather its symmetric part, is not negative
definite. For some problems, such “standard” schemes will give good answers (i.e.,
bounded errors) and for others instability will set in. Thus, for example, the “stan-
dard” scheme for the 1-D case has a matrix which, for all 0 < v7,vr < 1, though
not negative definite has eigenvalues with negative real parts. This assures, in the
1-D case, the error boundness. In the 2-D case, even though each of the block
sub-matrices of the £ x £ z-and-y differentiation matrices has only negative (real-
part) eigenvalues, it is not assured that the sum of the two £ x £ matrices will have
this property. This depends, among other things, on the shape of the domain and
the mesh size (because the mesh size determines, for a given geometry, the vz and

vr’s along the boundaries).

Thus we might have the “paradoxical” situation, that for a given domain shape,
successive mesh refinement could lead to instability due to the occurrence of desta-
bilizing 4’s. This cannot happen if one constructs, as was done here, a scheme

whose differentiation matrices have symmetric parts that are negative definite.

It is also interesting to note that if one uses explicit standard method then the
allowable C.F.L. may decrease extremely rapidly with change in the geometry that

causes decrease in the v’s. This point is brought out in figures 2.3 to 2.5.

Note that the construction of the 2-D algorithm, and its analysis, which were
based on the 1-D case, can be extended in a similar (albeit more complex) fashion

to higher dimensions.

Also note that if the diffusion coefficient v, in the equation
u = vViu
is a function of the spatial coordinates, v = v(z,y, z), the previous analysis goes
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through but the energy estimate for the error is now for a different, but equivalent

norm.

2.4 Appendix

Using D given in (2.1.3) and Ag, 71, Ag, Tr given in equations (2.1.5) to (2.1.18) we are

now ready to construct

1 1
S(M 4+ MT) = S{D+ D" — [ro(AL + cp ALP) + a(ALY + erALY)]
— (AP + crAP) + mR(ALY + cr ALY}
(2.4.1)
Upon using equations (2.1.3)-(2.1.18) in (2.4.1) one gets:
M+ MT
5 =
_ 0 -
W) 0
—2 0
32 -2 0
0 ... 0 -2 32 -60 32 -2
-2 32 —-60 32 -2
1 -2 32 -60 32 -2
24h2
-2 32 —-60 32 -2 0 ... 0
0 -2 32
-2
0 w(R)
= 0 -
(2.4.2)
where W) and W) are 6 x 6 blocks given by:
W = w4 wi (2.4.3)
wE = w4 W (2.4.4)
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0 1=1lory=1
Wik = 1<i,j<5 (2.4.5)
—(oum; +aym) 4,5 #1

0 1t=Norj3=N
Wi = 0K N-—i,N—j<4 (2.4.6)
—(an_iTN—j + aN—;TN—i)

-1 0 0 0 0 0

0 —30 12 13 -6 1

@ | 0 12 —60 32 -2 0
W2 =1 0 13 32 -0 32 -2 (247)

0 -6 -2 32 —60 32

| 0 1 0 -2 32 —60 |

60 32 -2 0 1 0]

32 60 32 -2 -6 0

® | -2 32 —60 32 13 0
W = 0 -2 32 —60 12 0 (2:48)

1 -6 13 12 -30 0

0 0 0 0 0 —1]

The next task is to show that M = %(M + MT) i1s negative definite. We write the

symmetric matrix M as a sum of five symmetric matrices,

We shall show that M is negative definite, and that MJ(] =2,...,5) are non-positive
definite. The M’s are given by

- 1 -

—5 0 0
0 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
i, = o 0 0 1 -2 1 = ME 4 M, + ME (2.4.10)




where

}

0
0 —1/28,

0

0

~1/28, 0
0

~

and M, is the remaining (N — 2) x (N — 2) middle block.

(2.4.11)

0
0
0
0
-1

000 O

000 O

000 O

000 O

000 O

-5

2

000 O

2 0000
-1 0000

-5

2
0
0
0
0

-1

0 0000
0 0000
0 0000
0 0000

(2.4.12)

0
0
0
0
0
-1

000 00O

000 00O

000 00O

000 00O

000 00O

000 00O

1

000 00O

1
-1 00000

—2

1

1

0 00O0O0OO

0 00O0O0OO

0 00O0O0OO

0 00O0O0OO

0 00O0O0OO
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—1/2 0 0 0 0 0
—30+ 20 12— 13 —6
0 1
—2ay7y —(aams + azm) | —(aaTa + aum) | —(0aTs + asTs)
12— —60 4 243 32-7 —2
0 0
—(aaT3 + asm) —2a3Ts —(asma + aas) | —(as7s + asTs)
13 32-7 —60 + 20 32—0
0 —2
—(aaTa + aum) | — (037 + aaTs) —204Ty —(aaTs + asTa)
—6 —2 32 -7 —58 + 0
0 28 — 3
—(aams + asma) | —(aa7s + asms) | —(outs + asTa) —2a5Ts
0 1 0 —2 28 — 3 —26 4+ 0
(2.4.13)
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M,

[ —26 + 0 28 — 3 A 0 1
0
28 — 3 —58 4+ 243 32—0 A —6
—2aN_4TN_4 —(aN—sTN—4 —(aN—zTN—4 —(aN—lTN—4 0
+an_aTn-3) | tan_aTN_2) | taN_aTN_1)
A 32-7 —60 4 243 32-0 13
—(aN—sTN—4 —2aN_3TN_3 —(aN—zTN—s —(aN—lTN—s 0
+an_aTN_3) +an_3TnN_2) | tan_3TN-_1)

0 A 32—0 —60 + 20 12—
—(aN—zTN—4 —(aN—zTN—s —2an_sTN_2 —(aN—lTN—z 0
+an_aTn_2) | tan_3TN_2) +an_2TN-1)

1 —6 13 12 -7 —30+ 20
—(aN—lTN—4 —(aN—lTN—s —(aN—lTN—z —2an_1TN-1 0
+an_aTn-1) | tan_3Tn-1) | tan_2TN_1)

| 0 0 0 0 0 —1/2
(2.4.14)
Let us consider M; - see (2.4.10); it may be decomposed as follows:
(1 —1 117 1 i 0 .
-1
- + 0
1 ..
i 1] | -1 1] L —1 |
(2.4.15)

The last matrix in non-positive definite. The first term is a product of a regular matrix

with its transpose, hence its negative is a negative definite matrix. Thus we established

that M, is negative definite for any finite dimension N. All its eigenvalues are negative.

It remains to show that the eigenvalues of M;/h? (see (2.4.9) ) are bounded away from

zero by a constant as h — 0 (N — o).
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Consider a symmetric tridiagonal matrix S with, like Ml, constant diagonals:

b a 0
a b
0 a b a
S = L . (2.4.16)

a b a
ab_

Designate by D; the determinant of the upper-left j x j sub-matrix. Thus D; = b, D, =

b a
det[a b},etc.

We have then D; = b, D, = b? — a? and in general
D; =bD; 1 —a’D;_5, (3<j<N) (2.4.17)

It can be shown that the solution to the recursion relation (2.4.17) is

1A B
D;=-— [_J T _J] (2.4.18)
a’ g M
where
1
mo= s [b—|— VB~ 4a2] (2.4.19)
a
b = o [b /= 4a2] (2.4.20)
2a?
1
H1 — 2
1
H1 — 2

We have already shown that M, is negative definite. The eigenvalues of M, are found

from
det(M; — I)) L 2} t(M, — A1) L ) =o (2.4.23)
e _ Y . de — el —— — = 4.
' 200 ' 200
thus either A = —1/28, < 0 (because By will be taken positive) or A = eigenvalue

of M; < 0. We would like to investigate the behavior of the eigenvalues of 25}22 M. In

particular we would like to show that these eigenvalues (which are negative) are bounded
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away from zero. To show this we analyze the behavior of M; — M as N increases. We
now take S = M, — AI. Tts determinant is given by Dy_5. Substituting (2.4.19)-(2.4.22)

into (2.4.18) with j = N — 2 we get after some elementary manipulations

2N—2

Dy_y = sin(N — 1)6 (2.4.24)

pri=3
where
p = V4-0b% b=-2-1; a=1 (2.4.25)
r = b2+ p2=2
§ = tan"'(p/d)
From (2.4.23) we require
Dy_2=0 (2.4.26)

This is equivalent, see (2.4.24), to requiring

krm
6 = k=1,... N —2. 2.4.2
N _ 17 ? ? ( 7)
From the definition of 6 and (2.4.25) we obtain
km —A(A+4)
t _— )= A . 2.4.2
an(N_l) A (A <0) ( 8)

Squaring (2.4.28) we get a quadratic equation for A, the solution of which is

k —1/2
A = 9 1:l:(1+tan2(N7_T1)) ]

- 9 :1 + cos (N’”_T 1)] . (2.4.29)

For any fixed N, the smallest values of || is given by (2.4.28) for k =1,

T
Amax = —min [A| = =2 |1 — . 2.4.30
mkln| | [ cos (N—l)} ( )

As N increases, we have

= -~ —71’h’ (2.4.31)



Thus the eigenvalues of M;/24h? (and hence of M, /24h?) are bounded away from zero
by the value — (g)

We now consider M,. One can verify that

My = — M, MY (2.4.32)
where
000 000 T
000 000
000 000 0
000 000 O
000 000 1 0
000000 — 1 0
0 1 -2 1
1 -2 1
M, = (2.4.33)
1 -2 10
0 0 1 -2 0
0 10000
00000
00000
00000
I 00000 |

Therefore M, is non-positive definite. In a similar fashion Mj is non-positive definite

because

My = — M MY (2.4.34)
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with

000000

000000

000000

000000

000000

000000 —1

1 —1
M = (2.4.35)

1 —1
100000
000000
000000
000000
000000
000000

The matrices M, and Ms are N x N matrices with zero entries except for 6 x 6 upper-left
(lower-right) blocks. It is sufficient to show that these blocks are negative definite. This
was done symbolically using the Mathematica software and plotted for 0 < yr,vg < 1
and Gy = 1. M4 and M5 are indeed negative definite for, 0 < yg,vz < 1. Thus we
have shown that M = (M + MT) is indeed negative definite, and its eigenvalues are
bounded away from zero by (—n%/24), even as N — oo, and the error estimate (1.1.13)

is valid.
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Chapter 3

The advection diffusion equation

This chapter considers 2"¢-order accurate approximations to model linear advection-
diffusion equations in one and more dimensions, on domains which may be irregular.

In section 3.1 we treat a model “shock-layer” equation (linearized Burger’s equation),

1
ut—l—auzzﬁum; t>0, 0<e<l; R>1.

2°d_order one dimensional semi-discrete scheme using the method-

We develop there a
ology presented in chapter 1. By constructing the scheme this way we can be sure that
the energy norm of the error to be temporally bounded for all ¢ > 0 by a “constant”
proportional to the norm of the truncation error and that this property is also valid for
the multi-dimensional scheme.

Section 3.2 presents numerical results. Subsection 3.2.1 deals with the steady state
solution to the “shock-layer” equation for a large range of the “Reynolds number”, R.
Oscillations that appear in the numerical solution when using a standard central finite-
differencing, are eliminated (or dramatically reduced) when the bounded-error algorithm
1s used.

Subsection 3.2.2 considers steady-state solution to a two dimensional scalar model

to the boundary layer equations,
1
Ut + auy + buy, = Rl R>1, b<0,

both for rectangular and trapezoidal domains. Again, the bounded-error algorithm

out-performs the standard scheme in ways described therein.
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Subsection 3.2.3 presents a time dependent example, modeling a boundary-layer

being excited sinusoidally,

1
Ut + aug + bu, = Euyy + obsin[k(z — at)].

Here, aside from the usual performance criteria, such as error-norms and quality of the
velocity profiles, we see that the error-bounded algorithm also has a significantly smaller

phase error.

3.1 Construction of the scheme

Consider the scalar advection-diffusion problem

Ou Ou 1 06%
8t "8z ' ROz? t)y Tp<z<lg t2 f 1.1
5 aam—l_Ramz—l_f(m’ ); T'b <ez<Tg, t>0, a>0 (3.1.1a)

u(z,0) = uo(z) (3.1.1b)
w(lg,t) = gr(t) (3.1.1c)
w(I'r,t) = gr(t)
and f(z,t) € C2
Let us discretize (3.1.1) spatially on the same grid as in chapters 1 and 2, and using

the same notation for the numerical approximation and for the error vector. The scheme

gets the form:

dv

E = MV—I—TLgL—I-TRgR—I-f(t) (312&)

where

1 1
M = EMP—I-G,MH = E(DP—TLPALP—TRPARP)—I-G(DH—TLHALH—TRHARH) (312b)

This section is devoted to the task of constructing M in the case of m = 2, 1.e., a

second order accurate finite difference algorithm.

tThe results for the case @ < 0 are found by an analysis anologus to the one presented in this section,
and are presented in the appendix to this chapter, section 3.4.
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We shall deal separately with the hyperbolic and parabolic parts of the r.h.s. of

(3.1.2b). The parabolic terms are given by:

OO = =

1 (P)

TL, = diag |:TL1 ,0,...

h2

hZ

%(2 +7)(1+72) —v(2 +7z)

AL, =

S@ )+ ) (2 + )

0 ... 0 %(VRJerZz) —r(2 + Yr)
Ag, =

0 ... 0 %(VRJerZz) —r(2 + Yr)

-2 1
-2 1
1 =2
0 1
1

0| =7

0
0
1
-2 1
1 -2 1
1 -2
1 -2
1 -2
{ 4
a
Sl )0+

1 1
Trp = 75 diag [0, 0,... ,7'1(211?] = ﬁdiag [0, 0,...,

The hyperbolic terms are given by:

Dy = =

[ 2 2
~1 0
1

39
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== O O

1
5(% +7;) O

1
5(% +7;) O

(2 +7&)(1 + &)

32+ 7)1+ 1)

32+ 7)1+ 1)

E

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)



[ ¢ 17-1 2 -1 ]
Ca 0 -1 2 -1
Cs 1 -2 0 2 -1
CN_32 1 -2 0 2 -1
CN_1 1 -2 1 0
I ev | | 1 -2 1]
[0 -1 1 |
1 -1 -1 1
1 -1 0 -1 1
+2hé (3.1.8)
1 -1 0 -1 1
1 -1 -1 1
i 1 -1 0_
where
1
Cp = [(en —e1)k + (Ney — en)], (3.1.9)
N -1
and
1
¢ = §(c1 —¢N)- (3.1.10)

We note that the first term in (3.1.8) is the usual second order differentiation matrix,
The additional matrices may be viewed as connectivity terms that allow the non-positive
definite property to be maintained as we go from one corner to the other. In the parabolic
case the need did not arise because there are penalty terms available at both corners.
These terms are O(h?), thus maintaining accuracy. One effect of using these connectivity
terms is that the 'core’ of Dy is not Toeplitz any more.

For @ > 0 in (3.1.1a), the left boundary is, for the hyperbolic part, an “outflow”
boundary on which we do not prescribe a “hyperbolic boundary condition”, therefore,
in this case 7z, = 0. When a < 0, then 7g,, = 0 — see the Appendix for details.

Here, with a > 0,

TRy = diag [0,0,...,7%0) 740 (3.1.11)
and ) )
0
Ag, = 0 (3.1.12)
0 —Yr 1+7r
| —Yr 1+7r |
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Next we shall show that the parabolic part of M is negative definite. The symmetric

part of Mp, Mp = 2(Mp 4+ M), is found using equations (3.1.3) to (3.1.7), to be

—2

vr +1

2—")’[,
24+

3")’[,—1

3")’[,—1 2—")'[,
vo+1 247~
—4 2
2 —4

2
0

We now decompose Mp as follows:

[ 4

41

0

—4 2
2 4 2
2 —4

2—")’R 3")’R—1

2+vr YR+l
] [0 0 0
00 0
00 -2
2
+(1-a)

2—")’R
2+r

3")’3—1
v + 1

(3.1.13)

o O o O

o




3")’[,—1
—2a
v +1

—4(1 — o)

2(1 — )

2—")’[,
24+

2(1 — )

—2(1 — o)

—2(1 — a) 2(1 — a)
2(1 — a) —4(1 — a)
2 — "YR 3")’R — 1
—2a
24+ vr Yr +1

2—")’R
24+ 7vr

3")’3—1
YR+ 1

—2a

~2(1 — 2a)

(3.1.14)

We look for 1 > a > 0 such that the second and third matrices in (3.1.14) are non-

positive definite. The first matrix in (3.1.14) is already negative definite by the argument

leading to eq. (2.4.31), in the appendix to chapter 2. By the same argument it imme-

diately follows that its largest eigenvalue is smaller than —an

2

. For 0 < a < 1, the

second matrix in (3.1.14) is non-positive definite, see eq. (2.4.34) and (2.4.35) in that

appendix. The third matrix in (3.1.14) has two square 3 X 3 corners which are negative

for 0 < a < .275. This completes the proof that Mp is indeed negative definite ( for a

certain range of a ).

Next we would like to show that My =

equations (3.1.8)—(3.1.12) we have

1
2
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[ —4 — 201 1 + 201 0
1 + 201 —201 0
0
0 0 0
~ 1
My = —
B 4n
0 2eny + 27371(\,1[{)1 —1—2exy — (14 ’yR)T](Vfi)l + ")’RT](VH)
i —1—2cx — (L+yR)TN Ly +9mmy ) 4+ 208 —2(1+YR)TY
(3.1.15)
We now write My as the sum of three “corner-matrices”,
MH = E[mHl + mmy, + mHs] (3116)
where
[ —4—2¢; 1+2¢ ]
0
1 + 201 —201
mya, = 0 )
0
- 0 -
o -
0 0
myg, = ‘ )
27RTi ) —1— (L +7R)7N % +VR7Y
0
B R R A R et I S (R
"o -
0
my, = CN (3117)
2 =2
-2 2

Clearly mpg, is N.P.D (non-positive definite) for Vey < 0. Also, mpg, is N.P.D for

¢; > 1/4. A simple computation shows that mpg, is N.P.D if 7v_; and 7y satisfy

244
1+

e
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(5 >0) (3.1.18)

)




am _  1—7yr(1-9)
e (3.1.19)

Thus we have proved that My is indeed non-positive definite, and therefore M = %Mp—l—
aMy is negative definite for V%, a > 0, with its eigenvalues bounded away below zero by
—ar?/R, 0 < a < .275, and the T'H)’s satisfying (3.1.18) and (3.1.19).

3.2 Numerical examples

3.2.1 One dimensional case

Here we consider the problem

0 | = t>0, 0<z<1 (3.2.1)
5 uz—Rum >0, 0<e< 2.
u(0,t) =1
u(1,t) =0

The steady state solution to (3.2.1) is:

1 — e—R(l—z)

Note that R (= 1/v) plays the role of Reynolds number in this model for a “linear shock
layer”.

Eq. (3.2.1) was solved numerically by two methods. In one ,referred to as “standard”,
we use central differencing for the spatial differentiation, and 4*"-order Runge-Kutta in
time. In this “standard” case, there is no need for special treatment at the boundaries.

v

The numerical steady state approximation v, (5; = 0 ), in this “standard” case,

satisfies, for (v = vgr = 1), the following finite difference equation:

1 1 .
o Wit = vim1) = 2 (Vi — 205 +0j-0) =0, (1<j<N-1) (3.2.3)

with vo = 1 and vy = 0. The solution to (3.2.3) is:

kI — g2N-I _2+hR

’Uj:
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Notice that if the “cell Reynolds number”, R¢ = hR > 2, then k < 0 and the
numerical solution, v;, will be oscillatory. If R¢ < 2 then we resolve the “shock layer”
(or “boundary layer”) and the solution will be smooth.

Numerical steady-state solutions of (3.2.1) using the “standard scheme”, and using
the “bounded-error” algorithm, (3.1.2), described above are shown in Figures 3.1 to 3.6
for Az = 1/100 and various values of R. Both schemes were advanced to steady state
using 4*P-order Runge-Kutta. It is clear that when R < 2, both schemes give good
results. For Rc = 10 (R = 1000) both show oscillations, but the new algorithm ap-
proximates the exact solution much better. When R¢c = 10® (R = 10°), the “standard”
numerical solution is useless while the “bounded-error” scheme gives excellent results;

in fact far better than for Bo = 10.

[y

u u
2 2
1.75r Standard 1.75p SAT
1.5} Exact _—— 1.5t Exact ————
1.25 1.25
1 ~ 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0.2 0.4 0.6 0.8 lx 0 0.2 0.4 0.6 0.8
Figure 3.1: Standard scheme, R¢ = 2 Figure 3.2: SAT, R¢c =2
u u
2 2
1.75r Standard 1.75p SAT
1.5} Exact _—— 1.5t Exact ————-
1.25 1.25
1 AVAVAV 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0.2 0.4 0.6 0.8 lx 0 0.2 0.4 0.6 0.8
Figure 3.3: Standard scheme, Rc = 10 Figure 3.4: SAT, R¢c =10
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7 -
Standard

[ satT
6 Exact ~ ——— 6} Exact ————
5 5
4 4
3 3
2 2
1 1
0 0.2 0.4 0.6 0.8 1X 0 0.2 0.4 0.6 0.8
Figure 3.5: Standard scheme, R¢ = Figure 3.6: SAT, R¢ = 1000
1000

3.2.2 A steady state two dimensional case

Here we shall consider a linear steady-state problem, which models, in a way, the
2-D boundary layer equations. The formulation is as follows: (the time derivative is left

in the equation, since the approach to steady state will be via temporal advance.)

1
ut—l—auz—l—buyzﬁuyy; t>0; 0<z<1 0<y<1 (3.2.5)
| y
u(0,y,t) = ﬁ + EbRe% sin Ty (3.2.5a)
u(z,0,t) =0 (3.2.5b)
u(z,1,t) =1 (3.2.5¢)

We also take ¢ = 1, and in order to have a growing “boundary layer” on y = 0, we must
set b < 0.
The analytic solution to this problem is:
1 — bRy

2 D2
u(z,y) = TR + %bRe%E exp {(—bf — 7r2) %} sin 7y (3.2.6)

Figure 3.7 is a 3-D rendition of u(z,y) for R = 90,000. (This 3-D plot looks the same
to the eye for various —1 < b < —4/v/R = —4/300.) Figure 3.8 is a plot of the “velocity
profile” inside the “boundary-layer” (0 < y < .04) at ¢ = .1,.25,.9 and b = —4/+/R.
The “bumps” at = .1 and =z = .25 may be considered as “emulating” results of fluid
mechanics computation for an incompressible flow near the entrance to a channel, see
e.g. [1].

The numerical solution of (3.2.5) using a standard central differencing scheme de-

pends strongly on the value of b (at a given R). Figures 3.9 and 3.10 show the 3-D
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plot of v, with b = —1 and b = —4/+/R = —4/300. Figs. 3.11 and 3.12 show the

4
300

that the “peak” in Figures 3.10 and 3.12 has nothing to do with the “bumps” in the

profiles at ¢ = .1 and ¢ = .9 for b= —1 and — respectively. It should be emphasized
exact solution (see Figure 3.8). The “peak” occurs way outside the boundary layer, and
also the amplitude behavior with the z-coordinate is counter to that of Figure 3.12 The
“peak” is due to a purely numerical oscillation.

The same series of plots, but as computed by the new algorithm, is shown in Figures

3.13 to 3.16.

0.8
R 0.6 x=0.1
0.4 x=0.25—————
0.2 %=0,9 ===ccccccac=
0 0.01 0.02 0.03 0.04
Figure 3.7: Exact solution Figure 3.8: Exact solution near the

boundary
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1 Fﬂ 40
0.5 3
A 30
50 *dx
20 20
30
20 10
"y 10
Figure 3.9: Standard scheme, b = —1 Figure 3.10: Standard scheme, b =
—4/300
2-51.1 u
2
1.5
1 x=0.1
0.5 X=0.9 —————
0 0.2 0.4 0.6 0.8 1Y
Figure 3.11: Standard scheme, b = —1 Figure 3.12: Standard scheme, b =

—4/300

Figure 3.13: SAT, b= -1 Figure 3.14: SAT, b= —4/300
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1.4 1.4
1.2 1.2

1 1
0.8 0.8 ’V
0.6 x=0.1 0.6 x=0.1
0.4 0.4

x=0.9 ————— X=0.9 —————

0.2 0.2

0 0.2 0.4 0.6 0.8 17 0.2 0.4 0.6 0.8

Figure 3.15: SAT, b= —1 Figure 3.16: SAT, b = —4/300

It should be noted (see table 3.1) that the “bounded-error” algorithm converges to
steady state (residual Ly norm < 107!3) an order of magnitude faster than the standard
scheme when using the same At, while cpu-time/iteration is about the same. The
standard scheme may be run at bigger At ( by about a factor of 2 ) while the SAT
algorithm was already at its maximum CFL number. If we let each scheme run at its
own maximum At then the non-dimensional times to get to a steady-state in both cases

are about equal, but the difference in errors remains.

'time’ to L, L, norm Ls norm Lo norm  max error

‘steady-state’ residual of the error of the error of the error location
b=-1
SAT 21.09 9.911e-14  8.805e-05 1.076e-04 3.108e-04 45, 46
Standard 417 9.987e-14  0.485139 0.674233 -1.00423 10, 4
b= —4/300
SAT 52.64 9.943e-14  1.665e-04 1.142e-03 0.01220 50, 2
Standard 416 9.967e-14  3.362e-03 2.447e-02 -0.2864 50, 2

Table 3.1: Rectangular geometry results

We also ran the same equations for a non-strictly rectangular geometry, where the
upper boundary instead of being y = 1 is y = 1 — (tan §)z, where 0 is the angle which

the upper boundary makes with the z-axis, see Figure 3.17.
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'time’ to L, L, norm Ls norm Lo norm  max error
‘steady-state’ residual of the error of the error of the error location

b= —4/300
SAT 52.56 9.984e-14  1.707¢-04  1.156e-03  0.01220 50, 2
Standard 401.11 9.995e-14  3.448¢-03  2.479e-02  -0.2864 50, 2

Table 3.2: Trapezoid geometry results

y:0 T ‘ T T
x=0 05 1 X

Figure 3.17:

For many 6’s the results of the performance of the two schemes are unaffected by the
change. However, there are some 8’s for which the standard scheme converges to steady
state much slower than before at its own maximum allowed At, while the performance
of the bounded-error algorithm remains the same as before. For example, see table 3.2,
for the case of § = 3.9°. As in chapter 2, the point is that for non-rectangular geometry
the distance that a boundary is away from a computational mode, vh, might become
extremely small and this causes the deterioration in the performance of the standard
scheme. Here it is reflected in the fact that the standard scheme cannot “support” the
larger allowed At that can be achieved for the case § = 0. For more complex geometries
it 1s very difficult to predict a-priori what range the values of v will take. The SAT
methods (the bounded error algorithm) are insensitive to the variations in v caused by

the geometry of the domain.
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3.2.3 A 2-D time dependent example

To check on the temporal “performance” of the bounded-error scheme, we considered

the following problem:

1
Ut + Qg + buy = —uyy + obsinfk(z —at)]; t >0, 0<z <1, 0<y<1l (3.2.7a)

R
1— e bR smy _ (#2822 | :
u(z,y,0) = 1R + Ee 2 e (7% )Ra sin Yy + yo sin kx (3.2.7b)
1 —e*®¥ bR umy
u(0,y,t) = ﬁ + Ee% sin Ty — yo sin kat (3.2.7¢)
u(z,0,t) =0 (3.2.7d)
u(z,1,t) = 1+ osink(z — at)] (3.2.7¢)
The exact solution of (3.2.7) is:
]_ - bRy bR Y 2 g2 2 T
u(z,y,t) = ﬁ + Ee%e_(%"'7T )Rz sin my + yo sin[k(z — at)] (3.2.8)

Again we take ¢ = 1, R = 90,000, b = —1, and —%. The parameters o and
k have certain constraints. If we want u > 0, we must take ¢ < 1. The number of
computational nodes, N, puts a lower bound of 2rN on the wave-length, 1/k, i.e.,
1 < k < 27 N. In the actual computations we used o = 1/2 and k = 30. All the plots
for this time dependent case are shown for ¢ = 10. Figure 3.18 shows a 3-D plot of
u(z,y,10). As in the steady-state case, the plot looks the same to the eye for various
—1 < b < —4/y/R = —4/300. Figures 3.19, and 3.20 show the 3-D plots of v, for
the standard and bounded-error schemes respectively. Figure 3.21, shows a z-profile of
v at y = .2, for both schemes and the exact profile, for b = 1. Figure 3.22, gives the
same profiles at y = .8. These plots bring out the differences in the phase errors of
the numerical algorithms. Figures 3.23 to 3.26, repeat the same information as given in
Figures 3.19 to 3.22 , but for b = —4v/R = —4/300. The efficacy of the bounded-error
algorithm is quite evident — even when b = —4/+/R, where the norm-errors away from
the boundary layer are not dissimilar. The phase error of the right running waves is

quite a bit smaller in the case of the proposed present scheme.
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Figure 3.20: SAT, b= —1. Figure 3.21: b= —1, y = 0.2 profiles.

Exact
Standard —————
SAT =====-------

Figure 3.22: b = —1, y = 0.8 profiles.

52



iy, 177
] 17 /]
s i,
LT 2ay t055
TN [T
stz

ssad

""
s "h'"'{"!-'."ln ayyeesesec
.’ii.’,',',mii;;-..,',','m,',',','"'~;-~.' i
Ity ety

LAALT99GEE
TR
Nkt ] 5 HTH
U e e
\\\\\\\{a,,""""'"" - 'n.,','.'.... 7
N\

4
XL

Figure 3.23: Standard scheme, b = Figure 3.24: SAT, b = —4/300.
—4/300.
2 5u 2 5u
Exact _— Exact
Standard ————— Standard —————
2 SAT ~  mmmmmmmmee- 2 SAT ~  mmmmmmmmee-
1.

0.

0 0.2 0.4 0.6 0.8 1 * 0 0.2 0.4 0.6 0.8 1
Figure 3.25: b = —4/300, y = 0.2 pro- Figure 3.26: b = —4/300, y = 0.8 pro-
files. files.

3.3 Conclusions

(1) A second order method has been developed which renders spatial second derivative
finite difference operators negative definite. This is not surprising, since negative

definiteness was achieved for 4*® order parabolic operators in chapter 2, see also
[2].

(ii) A second order method has been developed which renders spatial first derivative
finite difference operators non-positive definite. For the case when boundary points

do not coincide with grid nodes (v # 1), this is a new result.

(iii) The results (i) and (ii) allow us to construct a solution operator for the advection-

diffusion problem (and, of course, the diffusion equation) which is negative definite,
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thereby ensuring that this scheme is indeed error bounded.

(iv) The construction of these operators allows an immediate simple generalization to
multi-dimensional problems, on complex domains which are covered by rectangular
meshes. The proofs of the boundness of the error-norms carry over rigorously to

the (linear) multi-dimensional cases.

(v) Numerous numerical examples demonstrate the efficacy of this methodology.

3.4 Appendix, The case a <0

As in the a > 0 case the hyperbolic terms are given by:

[ 2 2
-1 0 1
1 -1 0 1
Dy = — .
H = op )
-1 0 1 0
-1 01
I —2 2
[ o 171 2 -1 T
Cy 0 -1 2 —1
Ca 1 -2 0 2 -1
CN_9 1 -2 0 2 -1
CN-1 1 -2 1 0
| en || 1 -2 1_
[0 -1 1 1
1 -1 -1 1
1 -1 0 -1 1
1 -1 0 -1 1
1 -1 -1 1
I 1 —1 0|
where
1
Ck = [(ew — e1)k + (New — e, (3.4.2)
N -1
and
.1
¢ = 5(01 —cn). (3.4.3)
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For a < 0 in (3.1.1a), the right boundary is, for the hyperbolic part, an “outflow”

boundary on which we do not prescribe a “hyperbolic boundary condition”, therefore,

in this case g, = 0, and

Ty = diag [ri0), 70)0,...,0,0] (3.4.4)
[ 1+ -z |
14+v —7¢ 0
Ap, = 0 (3.4.5)
- O 0 -

Since a < 0, and we want aMp to be non-positive definite, we need to show that

My = 1(Mg + MF) is non-negative definite. Using equations (3.4.1)—(3.4.5) we have

My =
[ 426 — 201 +92)r ™ 1420 — (1 +42)r® e ®
14+2¢ — (14 7L)7'2(H) + 7L7'1(H) —2¢; + 27L7'2(H) 0
1 0 0 0
ih

(3.4.6)
We now write My as the sum of three “corner-matrices”,
~ 1
where
o g -
2 =2 0
’I’I’L}I1 =C 0 N
0
- 0 -
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—4—21+y)r ) 1= ) 0 ]
1—(1+ ")’L)TZ(H) + ")’LTl(H) —|—2’y7'2(H) 0 0
0 0 0
mp, — 0 )
0
i 0]
B -
0
mi, = (3.4.8)

2CN -1 - 2CN
-1 - 2CN 4 + 2CN

Clearly mpg, is N.N.D (non-negative definite) for Ve; < 0. Also, mpg, is N.N.D for

ey > —1/4. A simple computation shows that mg, is N.N.D if 7; and 7, satisfy

(H 2446 S
A0 = 2 6520) (3.4.9)
(H) 1 — (1 —9)
= — 3.4.10
2 (1+~)? ( )

Thus we have proved that My is indeed non-negative definite, and therefore M = %Mp—l—

aMy is negative definite for V% > 0, with its ergenvalues bounded away from zero by
—ar?/R, 0 < a < .275, and 7H)’s satisfying (3.4.9) and (3.4.10), as in the a > 0 case
treated in the text.

56



Chapter 4

Mixed derivatives and parabolic
systems

In the previous chapters we first developed a one-dimensional scheme, and then gen-
eralized it to the multi-dimensional case, following the outline presented in chapter 1.
However, since a mixed derivative problem is inherently multi-dimensional, a different
strategy should be adopted. In section 4.1 two methods to tackle the mix derivative
scalar problem are presented. In section 4.2 a 2™ order scheme is presented that solves
this problem. In section 4.3 parabolic systems are discussed, and a scheme is con-
structed that solves the diffusion part of the Navier-Stokes equations in two and three

space dimensions.

4.1 The scalar mixed derivatives problem

Consider the scalar problem

Bu <~ 8 8 J
a:i;cija—mia—mju; (mla"'amd) €c QCR ; 120 (411&)
w(zy,...,24,0) = wo(@1,...,24q) (4.1.1b)
w(zy, ..., 24,t)|on = up(t) (4.1.1c)

It is assumed that this differential problem is strictly-stable in the sense of Petrowski,

ie. szzl cijmin; > 6 > 0 for all ijl n; = 1, see for example [10], and that ¢;; = c;;
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Note that equation (4.1.1) can also be written as:

O,
By 8e)C | o | (4.1.2)
O,

Oou (

ot
where the matrix C has ¢;; as its entries. Using this notation, the matrix C is symmetric
and positive-definite.

One way to attack this mixed derivative problem problem is to convert equation
(4.1.1) to its canonical form, u; = V?u, using a change of variables. This standard
technique can be found in many P.D.E. textbooks, for example [16]. In the new variables
the problem was already solved in chapter 2.

In some cases this method can be very effective. Often however, especially when
parabolic systems have to be solved, a change of variables may not be possible since
a change of variables that diagonalizes one equation in a system may not diagonalize
the others. The rest of this section is devoted to the description of an alternative
approach, which will be demonstrated in two space dimensions. A second-order accuracy
scheme will be built in the next section. It should be emphasized that this procedure
might not always work. However, under certain conditions, bounded-error schemes for
scalar equations and systems can be generated by using method. These conditions are
discussed in the next section.

We consider the scalar problem

0

8_7: = a’(1+ pi)tes + 2abugy + °(1 + p3)uy;  (2,y) € @ t20  (413a)
u(m7y70) = uo(m7y) (413b)
u(z,y,t)|sa = up(t) (4.1.3¢c)

Let us use a multi-dimensional grid and the notation presented in section 1.2. Then

the projection of the exact solution u(t) satisfies:

dU

b} (14 u2)PTDW) pU + T
(4.1.4)
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where

pi2) pe)

Dlea) _ . D) — ' (4.1.5)

Dj(lzz) D}(‘Z}Zé)

i.e. the matrix D*) is a diagonal-block matrix, the k" block in its diagonal, D,(cm),

is a differentiation sub-matrix which represents second z derivative when applied to the

k*® row. Similarly the matrix D®¥) is also a diagonal-block matrix, and the 7" block in

(v)
j

its diagonal, D", is a differentiation sub-matrix which represents second y derivative

when applied to the j** column. The matrices

Dl Dy
D(z) D(z)
D) = " Dy = " (4.1.6)
() (z)
1ar 2pm
and
oy o)
Dgy) Dgy)
D — o DY = T (4.1.7)
DY Dy

are defined in a similar way, with the difference that the matrices Dg?? Dgz), Dg) and

Dg) represents first derivative.

Now we can write the scheme:

dv
o = CO+p)MEIV 4

ab [ ME) PTMP P+ PTMEPP ME| V +
V(1 + p2)PPM® PV 4+ GE) 4 pPTGW)

(4.1.8)

The M matrices have the same structure as the D matrices do, with the sub-matrices

defined in a manner similar to that of chapter 1:
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M}yy) — D(yy) — TB]-AB]- — TT]-AT]- (419)

and
G = :(TngL1 + TR 8R, ), -+ (TLu 8Ly + TRBRL), - - -+ (TLar, BLary, T TRMRgRMR)] +
:(fTngL1 + OR,8R, ), > (0L, 8L, T ORERL)s - - -5 (O'LMRgLMR + O'RMRgRMR)] )
cv _ :(TBI 85, + 8L )+ (75,88, T T,8%): -+ » (TBar, BBar, + s, gTMc)] +
:(O'BlgBl +orgn),-..,(o8;88; + 01,81;),- -, (O'BMchMc + O'TMchMc)] .
(4.1.10)

After subtracting (4.1.8) from (4.1.4) we get:

dE

= = a(1+u}) MEIEab [Mgz) PTMWp 4 pPTMW P M@] b2 (14u2) PTMW) PE LT
(4.1.11)

where E = U — V. The time rate of change of || E ||? is given by:

1d
o | BIP = @1+ ) (B, MEE) + ab (B, M{) PTMPPE) +
ab (E PTMP P M&"”)E) + 821+ 2) (B, PT M) PE) + (E, T)

(4.1.12)

Equation (4.1.12) may be written as:

1d

YA
g | B = a(L4 ) (B, MEIE) + ab (MY B, PTMY PE)

ab (PTM" PE, M{IE) + 8(1 + ) (E, PP M® PE) + (E, T)
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Now we may use the Schwarz inequality and get:

1d

ET
5 I E 12 < &(1+ p2)(B,MEIE) +ab | M E ||| PPMYPE || +

T @x
ab || PPMY PE || | MP)E || +82(1 + 12)(E, PPM@ PE)+ | E || || T ||

Then by using the inequality:

(4.1.13)

we may write

1d

s IEIP < @ (E [(1+u$)M(N)+§(M§) M + MP M )} E)+

1 T T
b (E,PT [(1 + ) MO 4 (M&y) MY 4 MP MY )} PE) -

IET]
(4.1.14)
If the matrices
1 T T
[(1 + )M 4o (M&‘”) M+ MEI M )} (4.1.15)
and
1 T T
[(1 + ) MW 4 o (M&y) MY + MP MY )} (4.1.16)

are negative definite and bounded away from 0 by —co, ¢o > 0 then the error norm
| E || is bounded, see chapter 1 for the details. Note that each of these matrices is a

diagonal-block-matrix, therefor it is sufficient to prove that each of their blocks

{(1 +E)MED + 2 (Ml(k) ME 4 M M) )} (4.1.17)
and
1 T T
{(1 +p2) M) 4 5 (Ml(j_’) MY + MY MY )} (4.1.18)

are negative definite and bounded away from 0.
We can try to solve equation (4.1.1), in more than two space dimensions (d > 2),

using the same method. Writing the scheme, by analogy to equation (4.1.8) we get:
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d
= chjPJTM(zjzj)pjv+
j=1
d j-1
D3 e [PEMEIR PEME P, PTG Py PEMER) Y 4

7=1 =1

d
S e
7=1

|2

(4.1.19)

where the P;’s are the permutation matrices defined in section 1.2, (we take P, = I)
and the M’s and G’s are defined in a way similar to equations (4.1.9) and (4.1.10)

respectively. Now we write ¢;; = D) g # 7, ( thus for d = 2, ¢;; = ¢12 = cglz) cgzz) =

i i
ij) s

ab ), and after doing the same manipulations leading to equation (4.1.14) we get:

| 2 JRRY A o T
cij(szJ)_|_§Zc£:77') (Mg 3) Mg J)_I_Mg ])Mg 3) )

Lo <y (mer
2dt - T

7=1 i#j
TE[]T].
(4.1.20)
And as in the two-dimensional case we require that for all 7, 7 = 1,...,d the
matrices
d
lcy'jM(”"z") + % S el (MEME M?")M?")T)] , (4.1.21)
1#7
or, equivalently, their diagonal-blocks
d
[%M,ﬁz"’”") + %Z o’ (Ml(f”TMl(f") + Mz(f“Mz(f”T)] , (4.1.22)
1#7

be negative definite and bounded away from 0. It is shown in the next section that this

requirement is more difficult to satisfy than in the two-dimensional case.
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4.2 Second order scheme for the scalar mixed deriva-
tives problem

In this section we construct a second order accuracy scheme to the problem (4.1.3) using
the method presented in the previous section.

The matrices M,g'w) = D,(c'w) — 711, AL, — TR, AR, are constructed from:

(1 -2 1 0 1
1 -2 1 0
0 1 -2 1
o012
D;(J”")Zﬁ : (4.2.1)
1 -2 1 00
1 -2 10
1 -2 1
i 1 —2 1|
For simplicity we take
1 7T—5
1, = o diag 27L,0,...,0,0]; (4.2.2)
1 [ 7T—5
T, = 3ydiag [0,0,...,0, 27’*}, (4.2.3)
1 1 2
5(2+7L)(1+7L) —5(2 + 1) §(VL+7L) 0 ... 0
Ap, = : : : : N (4.2.4)
1 1
5(2+7L)(1+7L) —5(2 + 1) §(VL+7§) 0 ... 0
1 , 1
0 ... 0 5(7R+7R) —Yr(2 + 7YR) 5(2+VR)(1+7R)
Ap, = | : : : : : (4.2.5)
1 1
0 ... 0 5(’YR‘|"7122) —R(2+78) 5(2+78)(1+7R)

The matrices Ml(:) = Dgz) — o1, AL, — or, AR, are composed of:

63



[ —3—|—Cl 4—301 —]_—|—3Cl —C1

-1 0 1
-1 0 1
. -1 1
-1 0 1 0
-1 0 1 0
-1 0 1
| CN 1—3CN —4—|—3CN 3—CN
(4.2.6)
Where ¢; = cy = 1.
1 .
0L, = ﬁdlag [0L170L2707"'7070] ) (427)
1 .
OR, = ﬁdlag [0, 0,...,0, O'RN_I,O'RN] ; (4.2.8)

but we take o, = o1, = o0ry_, = ory = 0, 1.e. we don’t use the penalty terms for
M)
Finally the matrices Mz(:) = Dgz) are given by:

-2 2
-1 0 1
X —1 1
(2) _ o
Da =55 - 1 0 . (4.2.9)
-1 01
—2 2

The definitions of the matrices M J(yy),Ml(;“_') and MZ(;"’) are analogous.
After substituting (4.2.1) to (4.2.9) into (4.1.17) and denoting by M the symmetric

part of this matrix one gets,
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-m1,1 My M13 Mia

My M2 Ma3 M2y

my3 M3 M3z3 M34

Mi,4 M4 M3z4 Myg

Mo my
~ 1
M= Ton

where

mo

m;

ma

my M; MN_3N-3
my Mpy_2,N-3
0 mN-1,N-3

mpy,N-3

= 8—32(1+p?)
= 16(1 + p3)

Mo

mpy_2,N-3

MmyN_2,N-2

MN_1,N-2

mpy,N-2

miy = 26 —4(1+ p?)(10 + 11y, — 8yf — 57})

mip = —4(1+ p2)(2 — 14y + 37f + 573)
mis = —1442(1+p3)(4 —Typ — 27} +57%)
m1,4 = 4

mys = 8—32(1+ pul)
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myN_1,N-3
MN_1,N-2
my_-1,N-1

mpy,N-1

(4.2.10)

mpy,N-3

mpy,N-2

mpy,N-1

my,N




mas = 4+16(1+ p?)
mys = —6

mas = 16 —32(1 + u?)
mas = —4+16(1+ pl)
mys = 10 —32(1 + p?)

and

myy = 26— 4(1+ p3)(10 + 1198 — 87 — 573)

myn-1 = —4(1+p3)(2 — 14vm 4 37; + 57z)
myN-2 = —14+2(1+ p3)(4— TR — 29k + 57R)
myN-3 = 4

my_1nN-1 = 8—32(1+ pud)
my_1N-2 = 4+16(1+ u2)
my_inNn-3 = —6

my_aN_2 = 16— 32(14 p?)
my_aN-s = —4+16(1+ u2)

my_gn-3 = 10— 32(1 + ,“;)

We now decompose M as follows:

. 1 . . . . .
M= [16M§aM1 4 16p2(1 — @) My + 4M; + M, + Ms] (4.2.11)
where:
L, i
1 -2 1
1 —2 1
M, = : (4.2.12)
1 2 1
1 2 1
1 -2

66



and

=
I

O O O O

0 0O 0
0 0O 0
0 0O 0
0 0 0 —1 1
1 -2 1
1 -2 1
0 1 -1 0 0 0
0 0 0O
0 0 0O
| 0 0O 0_
0 0 0 i
0 0 0 0
0 —1 2 -1
0 2 —b 4 -1
—1 4 —6 4 -1
—1 4 —6 4 -1
-1 4 -5 2 00
0 -1 2 -1 00
0 0 0 O
0 0 0 0]
+mq 1 mi o mi3 mi4
R2ula | —16pia
mi 2 my 2 ma3 ma 4
—16pla | +32pa | —16uia
mi,3 ma3 ms3;3 m3,4
—16pla | +32p2a + 4 —16pla — 8
mi,4 ma 4 ms3,4 My,4
—16p2a — 8 | +16(1 + a)u? + 20
0
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(4.2.15)



0 0
mpy_3,N-3 my-2N-3 |MN_1,N-3 | MNN-3
+16(1 + a)pud +20 | —16p2a — 8
~ 1
Ms = 16h2 MN_2,N-3 MmN_2N-2 |MN-1,N-2 | MNN-2
—16p2a — 8 +32p2a+4 | —16pca
0
myN_1,N-3 mNy_-i1,N-2 |MN_1,N-1 | MNN-1
—16p2a +32p2a | —16p2a
MmN N-3 MmN N-2 my N-1 mpn,N
—16p2a | +32ula

(4.2.16)

M is negative definite by the argument leading to eq. (2.4.31), in the appendix

to chapter 2. By the same argument it immediately follows that its largest eigenvalue

is smaller than —h?x%. M, and M; are non-positive definite, see equations (2.4.32) to

(2.4.35) in that appendix. The matrices M, and M; are non positive definite for all

0 <75, <1, 0 < a < amax(p1). For p? < p2. = 0.4342 there is no positive a. If,

for example, we take u2 = 1/2 « ranges from 0 to 0.02 . For p? > 1/2 ., increases

with p2. These results were verified using the Mathematica software. We get the same

expressions for the differentiation matrices in the y direction, the only difference being

that in the y direction we have p, instead of y;. Thus we have proven that if 2, u3 > 1/2
then from (4.1.14), (4.2.11) and the fact that M; is bounded away from 0 by —h?x? it

follows that

1d
2 dt
TENIT-

Then by using the definition:

co = 0.02 [a®(u? — 1/2) + b2 (2 — 1/2)]
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we get that
T [lar

IE (< (1—e™) (4.2.17)

where the “constant” || T ||p= maxo<,<¢ || T(7) ||. This “constant” is a function of
the exact solution u and its derivatives.

The value of the maximal a, ( maxy = 0.02 ), and the minimal value of p? and p2,
(1/2 ), could probably be improved by using different values for the coefficients 7's ,o’s
and c¢’s in (4.2.2), (4.2.3) and (4.2.6) to (4.2.8).

It should be noted that when we write equation (4.1.1) in the form (4.1.2), then in
order to prove the negative-definiteness of the discrete differentiation operator in (4.1.8),
the diagonal of the matrix C should be very large with respect to the off-diagonal terms
( by a factor of 1.5 ). This problem limits the usefulness of this approach, especially in
the case of many space dimensions, d > 3, where the ratio between the diagonal and
off-diagonal terms becomes larger. For example, if the matrix C has the form:

ce; fi1#£7g
Cij = )
sc; ifi=j
then by equating eq. (4.1.22) to eq. (4.1.17) one can see that s should be at least
1.5(d —1).

In the general case, see equation (4.1.20), a ratio between the coefficient of M (i%i)
and the coefficient of (M gzj)TM?") + MS’”M&”")T) of least 3 will assure the negative
definiteness. When this ratio is grater the 3 we can bound the error-norm by a constant

using the same considerations leading to eq. (4.1.17).

4.3 Parabolic systems; the diffusion part of the Navier-
Stokes equations

The analysis of general parabolic systems is much more complex than that for the
scalar equations. It can be carried out for some important parabolic systems, such as
diffusion part of the Navier-Stokes equations, which will now be considered.

Consider the problem

(1)
ou’ _ 4

—Uu

1
ot 3 B tal) +2ul); (zy)e Q; >0

3 =’
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ou?
ot

. Lo,

=l e+l (ey)e O 120
u(z,y,0) = u(z,y); (z,y) € Q
u(z,y,0) = uP(z,y); (z,y) € O
u)(z,y,t)|an = u)(t)
u®(z,y,t)|on = ul (t)
(4.3.1)

where the Reynolds number, R., has been absorbed in the temporal variable ¢t.

Let us discretize (4.3.1) in the same way as we discretized the scalar equation (4.1.3).

1
d‘;: b %D("”"”)U(I) + PTpw) py
1
= [P PO P 4 PTDP P DPY| U 4 )
2
d‘;:) _ D(m)U(z)Jr% P py |

1
= [P PO P 4 PTDP P D | U 4 T

(4.3.2)

The definitions for the D’s and P are given in (4.1.5) to (4.1.7). We can now write

the scheme, analogous to equation (4.1.8).

1
dVE 4 ey ) 4 pT gl py @)
di 3
1
. [Mgz) PTMP P+ PTMP P M&z)] v® gl 1 pTe® 1 g 4 praly
dav(?) — MEy@ éPTM(yy) PV 4
di 3

(ME PTMEP P+ PTMPP M| V) 1 GE + PTGY) + G + PTGY)

| =

(4.3.3)

where the M’s are given in (4.1.9), the G’s are analogous to those in equation

(4.1.10), and the first number in the subscripts indicate in which equation the G’s

are and the second one indicate whether the boundary conditions are of u(!) or w(?).

(=)

For example Gj; reflects the boundary values for u(!) in the z direction (rows) and it

appears in the second equation. After subtracting (4.3.2) from (4.3.3) we get:
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1

dt 3
L1y (@) pT 4 4() T p ) )] @2 (1)
o [ME) PTMPP 1 PTMP P M B® 4T

dE?) 4
= ME2ER) L ZpT p(w)gR) p

dt 3 *
1
. (M) PTMPP 4 PTMP P MP| ED + T

(4.3.4)

Taking the scalar product of E®) with the first equation and of E() with the second

one one gets after adding the two equations:

&.|g‘

(|| EQ® ||2 + | E || ) — (E(I),M(‘”"”)E(I)) 4 (E(I),PTM(W)PE(I)) T

N | —

(BW, M PTMPP + PTMP P M| E®) +

4 (E®, PT M) PE®) 4
3 ?

TN D =W

=

(@) ME=IER)) 4

M PTMP P+ PTMPP MP| ED) +
E(l),T(l)) 4 (E(2),T(2))

+ o=
~—~ N
524
»

(4.3.5)

Then after doing the same manipulations leading to equation (4.1.14) we get:
1d
5 B+ 1B ) < (20|
1

EQ) pT (vo) o —
(B0, 7 a1

FME) 4 = (METME + MM )]E
)T
2

(1)) N
PE(I)) +
_I_

T T
(M ME + MM )} E( >)

T
(ng) ng)_l_ng)ng ]
E® | pml) L L
! 12
1

4
E®@ pT |Zaqlwy) o —
(B2, 7 |Sa 4

FEO T |+ | E® | T .

T T
(ng) ng)_l_ng)ng) ):| PE(z)) +

(4.3.6)
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We can now define the error vector E as a 2N long vector whose first N entries are
the entries of E(Y) and the other N entries are the ones of E(?). In a similar way we can

define the truncation-error vector, T. Using these definitions the norms of E and T are:

1
1B 1= 5yl B0 |2 4 B |2 (4.3.7)
and
1
1T 1= /I T [P+ T |2 (4.3.8)

If we use the second order differentiation matrices presented in the previous section,
see equations (4.2.1) to (4.2.9), then using the arguments presented in the last paragraph

of that section and using, e.g., % = %(1 + u?), etc, we may write the following inequality:

1d 11
—— | E|’<-0.02— ||[E[*+ | E| | T 4.3.9
B 002 [BIP BT (4.3.9)
Now by using the definition:
11
c0:0.02€,
we get that
T [lar et
Y ER U (43.10)

where the “constant” | T ||y= maxo<-<; || T(7) ||. This “constant” is function of the

exact solution (u(l) u(z))T and its derivatives.

?

We can also apply the same procedure to the diffusion part of the Navier-Stokes

equations in three-dimensions.
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Consider the problem

ful)) 4 1 1 1 I 1 s

o~ gt Tuy Tull +gul) +oulls (myz) e @5 t>0
ou? 4 1 1

% = u,(fz) + gug) + ug) + gug) + §u$); (z,y,2) € Q; t>0
Hu(3)

4 1 1

3 3 3 1 2). )

ot = u(zz) + ug(;y) + gugz) + gu(zz) + gug(;z)a (mayaz) c Q: t Z 0
u(l)(m,y,z,O) — u(()l)(m,y,z); (z,y,2) € Q

u(?’)(m,y,z,O) = u((,s)(m,y,z); (z,y,2) € Q
u(z,y,2,t)lon = up (1)
W(z,y,2,)|an = w5 (1)
W(z,y,2,1)|an = u5 (1)
(4.3.11)

We write the scheme, analogous to equation (4.3.3).

ME2yA) pZTM(yy)pzv(l) + pgTM(ZZ)psv(l) 4

(M) PTMP P, + PTMP P, M| VD 4

D =D =W

[Mg'”) PTMP P, + PTMP P, M&"”)] Ve 4
G + pPTc¥ 4 prGld) +

G + PTG + PTGl +

G + PGl + PG
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_ M)y % PT MW p, V() 1 pT p(2) pyv ) 4

% (ME) PEMEP P, + PEMP Py M| VI 4

% [PZT MW Py PEMP P, + PTMP P, PT M&y)PZ] Ve 4
G + PTGY + PTGY +

e + PIGY + PTG +

Giy + PYGY + PG

_ MEE) 4 pT A py®) | dpT pglen pyie) 4
3

(M) PTMP Py + PTMEP Py M V)

— oy =

. [PZT M@ P, PTMP P, + PTMP P, PT M&y)PZ] v |
G + PTGY + PTG +
GE + PIcY 4+ prGl) +

Gi7 + PY G + PGy

(4.3.12)

Then after doing the same manipulations leading to equation (4.3.9) and the analo-

gous definitions for E and T,

1
I'E = ﬁ\/ll EM 12+ [ E@ | + | EG) ||?

and

1
I'T = %\/H T2 + || TG |12 4 | TC) |2,

we get, as before:
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1d 11
IEP<—0.02 [E*+ [ E[]T|

2dt
Now by using the definition: .
Co = 0.023,
we get that
e < L — e

where the “constant” | T ||y= maxo<-<; || T(7) ||
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Chapter 5

Bounded error schemes for the wave

equation

5.1 Description of the method

We consider the following problem

and f(z,t) € C%

(5.1.1a)
(5.1.1b)
(5.1.1c)
(5.1.1d)

(5.1.1e)

Let us discretize (5.1.1) spatially on the same grid and use the same notation as in

in the previous chapters.

We would like to construct a semi-discrete finite difference scheme to solve (5.1.1)

without first writing it as a system of first order P.D.E’s. The reason for constructing a

direct solver for the wave-equation is demonstrated for the two-dimensional case:
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Consider,
0%u v O%u
__I__
0z?2  Oy?
u(z,y,t) = ugp(z,y,t), (z,y) € 0Q
u(z,y,0) = wo(z,y)

0
au(m, Y, 0) = uto(ma y)

Converting the above to a system of first order P.D.E’s, using the standard substi-

tution: vl = uy; v = uy; v = u, we get:
! 010 v! 00 1 v!
o[ " ] ]
5 o =1100 Ba T 14+1000 50 vl (5.1.2)
I 000 z I 100 Y\ I

Unlike the one-dimensional case, where the right hand side of the system can be
diagonalized, this is not the case here, as the two matrices cannot be diagonalized
simultaneously. This means that boundary values must be assigned to vl and v,
These values cannot be derived directly from the original wave equation, nor from a
procedure analogous to the 1-D characteristic decomposition. Additionally it should
also be noted that if we solve the wave equation in d-dimensional space on a grid
with N grid points by converting it to the d-dimensional version of (5.1.2), then after
discretization we have an O.D.E system with (1+d)N ’variables’. When (5.1.1) is solved
by the method to be proposed shortly, see (5.1.4), one gets an O.D.E system with only
N ‘’variables’, or 2N ’variables’ if one solves (5.1.11).

Since, unlike the previous cases, equation (5.1.1) has a second time derivative, at-

tempts to apply naively the methods presented in chapter 1 will fail. The reason is that

if we write a discrete approximation to equation (5.1.1),

d*u
ﬁ = Dll —|— f(t) —|— r]:‘(.3 (513)
and the numerical scheme,
d’v
ﬁ = [DV — TL(ALV — gL) — TR(ARV — gR)] + f(t) (514)

as in chapter 1, the equation for the error-vector € becomes,
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d? e

W = [DG—TLALG—TRARG]—I-T

— Me+T (5.1.5)

where

M=D —TLAL—TRAR
is a negative-definite matrix and

T=T. Ty —®Tr=(T1,...,Tm,...,Tn)".

If the matrix M can be diagonalized, as can be shown for the M’s used in chapters

2 and 3, then

M =Q7'AQ,

with the diagonal matrix, A, having the eigenvalues of M. Using the definition g = @ €,

equation (5.1.5) becomes,

T
A T
7 p+Q
= Ap+T. (5.1.6)
This is an un-coupled system of O.D.E’s. The general solution for the mth equation,

P (t) = cmyexp (\/); t) +Cmsy EXP (—\/Et)—l—ﬁ /Ot sinh (\/E (t — s)) Tm(s) ds .

Recalling that at t = 0, € = € = 0, we have, at t = 0, g = p, = 0 and the
solution for (5.1.6) is:
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fm(t) = %/ﬂt sinh (\/E (t— s)) Tru(s) ds . (5.1.7)

Note that unless all the eigenvalues of M are real and non-positive some of the
VAn’s will have a positive real part. In that case at least one of the u,, may grow
exponentially in time. In order to prevent this, we have to demand that M, in addition
to being negative-definite, also possess only real eigenvalues. Furthermore in order to
use the one-dimensional scheme as a building block for multi-dimensional schemes in
the way presented in the second section of chapter 1, M should be built in a way that
verifies that these properties will be carried over to the multi-dimensional differentiating
matrix. One way to achieve this goal is to construct M as a negative-definite symmetric

matrix. Then, an estimate on the error bound can be derived directly from the solution

(5.1.7),

1

VIAml

where TmM = mMaXo<s<t |Tm(.s)| Then, for a normalized @

| ()] < T it

1 .
lell=1 wll< g” T |t (5.1.8)

where ¢o = minm,=1,. n 1/|Am|. Therefore || € | grows at most linearly with ¢t. Alterna-
tively one may use an energy method in a way similar to that presented in chapter 1.

Taking the scalar product of €; with (5.1.5) one gets:

(€, €:) = (€, M €)+(€,T).

Since M is a symmetric matrix this equation can be written as:

1d [
2dt
After integrating from 0 to ¢ one gets:

le | —(€,Me)] =(e,T).
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N | —

el (e o] = [ (emas

-~ [ item.— (e Tas

0
Using Schwarz’s inequality, —( €, M €) > co || € ||* and the fact that at ¢ = 0,

€ = € = 0 one gets:

1 t
solelr < (e~ [ (T
2 0
¢
< el [T +/ | €l || Ty [ ds. (5.1.9)
0
Denoting || T |m = maxo<r<e || T(7) [, [| Te [ = maxocr< || Tr(7) ||,
| € ||m= maxo<,<: | €(7) || and by ta the time where || € || gets that maximum

value, (0 <ty < t), we can evaluate equation (5.1.9) at t =ty by:

2
||6IIMZS;[II€||M||T||M+||€||M||Tt lar tar ] -

After a division by || € ||m one gets:

lell < lleln
2
< o LT flse 4 1T fle o ]
2
< g[I|TI|M+II T, ||lar t] (5.1.10)

i.e., a linear growth in time. It is not surprising that the bound (5.1.10) is not as ’sharp’
as (5.1.8), since the latter was derived directly from the exact solution (5.1.7).
As mentioned before, the multi-dimensional case

0%u

W :Vzu—l_f(ml;"')md)t)

on complex shapes is completely analogous to the method indicated in chapter 1 and

the proofs go over in the same manner.
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Note also that instead of solving (5.1.4) directly as a 2°¢ order ODE system in time

one can solve

dw

’r = [DV — TL(ALV — gL) - TR(ARV - gR)] +f
v _

7

(5.1.11)

The number of ’variables’ has increased from N to 2N but one gains in the simplicity

of the time integration.

5.2 Construction of the scheme

This section is devoted to the task of constructing a symmetric negative definite M for

the case of m = 2, i.e., a second order accurate finite difference algorithm.

Let

1 -2 1 0
1 -2 1 0
0 1 -2 1
0 0 1 -2 1
1
D:ﬁ
1 -2 1 00
1 -2 10
1 -2 1
1 -2 1
[0 17T o o o o ]
Cy 1 -3 3 —1
cs -1 4 -6 4 -1
CN_2 -1 4 -6 4 -1
CN—-1 —1 3 -3 1
I 0] 0 0 0 0

81



0 1 -2 1
-1 2 0 -2 1
_¢ (5.2.1)
-1 2 0 -2 1
-1 2 -1 0
i 0 0 0 0_
where
cN_1 — C
ck202+1\;v17_?)2(k—2), (5.2.2)
and
- CN—1 — C2
= - 5.2.3
¢=—— (5.2.3)

Note, that as in chapter 3, we had to resort to using connectivity terms in (5.2.1).

1 1
5@+t +m) —v@+v) S+ ) 0 ... 0
Ap = : : : : F (5.2.4)
1 1
5(2+7L)(1+7L) —5(2 + 1) 5(7L+72) 0 ... 0
1 , 1
0 ... 0 S(mm+7k) —m2+7m) 5(2+7m)(1+78)
Ag = : (5.2.5)
1 1
0 ... 0 §(VR+7122) —Yr(2 + Vr) 5(2+7R)(1+7R)
1. '
T = ﬁdlag [TL,, TLyy TLs> 0, ---,0,0]; (5.2.6)
1 .
TR = ﬁdlag [0, 0,...,0, TRN_Z,TRN_I,TRN] ; (5.2.7)

In order to make the matrix M = D — 1, A, — TR Ag symmetric we choose:
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(1—=91) 7

Cy =
2
_ (=)
CN—1 = ———
2
3= — 271 7L,
T, =
I+71
-2
gy = BTV (5.2.8)
2+
_ 3—7TR—27R7Ry
TRN_1 —
1+9r
. =24+ 9YrR+YRTRN
fin— 2+vr
71, and 7g, will be determine later.
We now decompose M as follows:
1
M = ﬁ[aMl —|—(]_ —a)Mz —|—M3—|—M4—|—M5] (529)
where: ) )
-2 1
1 -2 1
1 -2 1
M, = , (5.2.10)
1 -2 1
1 -2 1
- 1 - -
[0 0 0 |
00 0
0 0 —1 1
1 -2 1
M, = , (5.2.11)
1 -2 1
1 -1 00
0 00
i 0 0 0|
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where:

and

Ca
C3

[0 0 0 1
0 -1 1
0 1 -2 1
1 — 1 0
1 -1 0
I 0 0 0|
1To o o 1
0 -1 1
0 1 -2 1
. (5.2.12)
CN_> 1 -2 10
CN_1 1 -1 0
0] 0 0 0|
C 1,1 1,2 1,3 7
my Mmy My
1,2 2,2 2,3 0
my Mmy My
m1,3 mz,s m3,3
M, = N N N (5.2.13)
0 0

(L +7.) 2+ 7)1y
2
—2—a+7L(2+71) 11,
vz (1 +71) 71,
2
L T -4 +71) —® (2 +vp) (1 + 4m1,)
2 (L+z)

14+ 2a —

1 —

2a

3vp  vi?
lma- Sty twm
—4 4+ — v — v (L + L) 71,

200 +
2(2+171)
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N-2,N-2 N-1,N-2 N,N—2
m m

M; = 5 5 5 (5.2.14)
0 mN-LN¥-2  N-1,N-1  NN-1
5 5 5
N,N—2 N,N-1 NN
| 5 mg mg ]
where:
1 2
my Nl = —2— o+ (2+YR) TRy
1
mév’N_Z o1 vr ( -|-2’)’R) TRy
LN _ o Ty =4 (L4 7R) — vR® (2 + vr) (1 + 47hy)
? 2 (1 +g)
C1N— 3 2
éVl,NZ _ 1_()_%_'_%_'_71227_&\}
mN-aN-2 _ o, n —4 +vr* —v8* — 1R’ (1+vg) TRN‘
? 2(2+r)

The matrix M; is negative-definite and bounded away from 0 by h%n? by the argu-
ment leading to eq. (2.4.31), see appendix to chapter 2. M, is non-positive definite,
see eq. (2.4.34) and (2.4.35) in that appendix. From (5.2.2), (5.2.3) and (5.2.8) fol-
lows that ¢, > 0, & = 1,..., N, therefore, the matrix M3 is non-positive. For a given
value of 0 < o < 1, 71, and 7g, can be found such that the matrices M, and M; will
be non-positive, for all v and yg. For example: for a = 1/10, 7, = 7g, = 4, for
a=1/2, 7, = tr, = 9 and for a = 8/10, 71, = 7r,, = 24. This completes the proof
that M is indeed a negative-definite matrix, bounded away from 0 by aw?. Therefore
the norm of the error vector || € || can grow at most linearly in time, see equations (5.1.8)

and (5.1.10).
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Summary

In this work a methodology for constructing finite-difference semi-discrete schemes,
for initial boundary value problems (IBVP), on complex, multi-dimensional shapes was
presented. Its starting point is the development of one-dimensional schemes on a uniform
mesh with boundary points that do not necessarily coincide with the extremal nodes of
the grid. The 1-D construction was done in such a way that the coefficient matrix of the
corresponding ODE system ( which represents the error evolution in time ) is negative
definite and bounded away from 0 by a constant independent of the size of the matrix,
or is at least non-positive definite. This construction was carried out by imposing the
boundary conditions using simultaneous approximation terms (SAT). Using the fact
that the coefficient matrix is negative, or non-positive, definite it was proved that the
one dimensional scheme is error-bounded and that this scheme can be used as a building
block for multi-dimensional, error-bounded algorithms. The general theory was given
in chapter 1.

In chapters 2 and 3 the methodology presented in chapter 1 was used to develop
second and fourth order accurate approximations for 9?/9z* and a second order accu-
rate approximation for §/0z. Using these approximations error-bounded schemes were
constructed for the one and multi-dimensional diffusion and linear advection-diffusion
equations. Numerical examples show that the method is effective even where standard
schemes, stable by traditional definitions, fail.

In chapter 4 the methodology presented in chapter 1 was adopted to construct error-
bounded schemes for parabolic equations and systems containing mixed-derivatives. In

chapter 5 the method was modified to solve the wave equation.
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The efficacy of the method was demonstrated via the various numerical examples.
The operators developed herein can be used as ’off the shelf operators’ for other dif-
ferential equations of mathematical physics. However the severe restrictions on the
approximations, i.e. the negative or non-positive definiteness in standard L, norm,
make the construction far from being trivial. The development of fourth order accurate
approximations for 8/0z as well as schemes for hyperbolic systems is left for future
research. The imposition of other boundary conditions such as Neumann or absorbing

boundary conditions is also left for future study.
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