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Staircase-Free Finite-Difference Time-Domain
Formulation for General Materials in Complex

Geometries
K. H. Dridi, Jan S. Hesthaven, and Adi Ditkowski

Abstract—A stable Cartesian grid staircase-free finite-differ-
ence time-domain formulation for arbitrary material distributions
in general geometries is introduced. It is shown that the method
exhibits higher accuracy than the classical Yee scheme for com-
plex geometries since the computational representation of physical
structures is not of a staircased nature. Furthermore, electromag-
netic boundary conditions are correctly enforced. The method sig-
nificantly reduces simulation times as fewer points per wavelength
are needed to accurately resolve the wave and the geometry. Both
perfect electric conductors and dielectric structures have been in-
vestigated. Numerical results are presented and discussed.

Index Terms—Computational models in electromagnetics and
optics, finite-difference time-domain methods, numerical solution
of partial differential equations, staircase, time-domain solution of
Maxwell’s equations.

I. INTRODUCTION

T HE need for higher capacity and higher speed telecom-
munication and computing systems requires the ongoing

miniaturization and integration of optical waveguide technology
and components of diverse optical electromagnetic properties
such as diffractive gratings, antennas, photonic crystal struc-
tures, etc. This puts high requirements on modeling and de-
sign tools, which should offer modest solution times and good
accuracy in space and time for general large scale structures
of finite or infinite dimensions. Furthermore, the complex sub-
wavelength geometry and multidimensional material composi-
tion of physical structures often prohibits an exact analytical so-
lution and deceives the intuitive understanding of their physics.
Therefore, it is often desirable to solve Maxwell’s vectorial curl
equations with as few approximations as possible to get a re-
alistic insight. A number of such vectorial numerical methods
as the finite-difference time-domain (FDTD) method [1]–[9]
and the spectral method [10]–[15] have succesfully been ap-
plied to solve Maxwell’s equations for a wide range of prob-
lems. The original FDTD method has the advantage of being rel-
atively simple in its formulation and its definition of the geom-
etry (grid-layout) because no complicated and time-consuming
mesh generation is needed. The spatial second-order accurate
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FDTD scheme is still the most popular method as higher order
methods use field information further away to evaluate spatial
derivatives at each point, making them a bit more complicated
for problems in complex geometries. However, the FDTD ap-
proach based on the classical Yee scheme [1] with quadratic
cell mapping in space gives the modeled structures a “staircase
nature” and requires many points per wavelength to efficiently
resolve the geometry and the minimal material wavelength. Fur-
thermore, the classical FDTD approach is ill-suited for arbi-
trary geometries with multiple materials as the electromagnetic
boundary conditions are not automatically nor exactly imposed
and satisfied at these boundaries [16]–[18], which presents an
additional source of local spatial errors besides the the numer-
ical dispersion due to the spatial and temporal second-order na-
ture of the scheme. The larger the computational domain and
the more complex the material distributions are, the more the
noise accumulates in the numerical solution. These errors grow
at least linearly in time for a second-order scheme. Some re-
ports on the issues of the staircasing problem in connection
with the FDTD method can be found in the literature [16], [17].
Some effects of staircasing have been studied for simple geome-
tries; however, a general remedy for more complex problems
still needs to be found, especially because general geometries
rarely have contour lines that fit on the discrete gridpoints of
the chosen mesh in a particular coordinate system, making the
exact application of field boundary conditions at material inter-
faces impossible without the averaging of material parameters.
The boundary conditions are not imposed exactly by this aver-
aging in regions that are not geometrically clearly resolved near
material interfaces.

In order to enforce the boundary conditions, eliminate the ef-
fects of staircasing, and reduce the required number of points per
wavelength, a stable second-order accurate FDTD formulation
is presented. The numerical scheme can be adapted and applied
to dielectrics as well as perfect electric conductors (PECs) of
general geometry.

Section II is concerned with the basic principles of the method
in one-dimensional (1-D) space. It is described how the new
FDTD method supports the correct application of electromag-
netic boundary conditions, and numerical experiments are pre-
sented for a 1-D PEC cavity filled with two dielectrics. The
numerical accuracy of the Yee scheme and the new formula-
tion is compared. In Section III, two-dimensional (2-D) models
are described and numerical results are presented for two case
studies. The first test case is a PEC resonator of cylindrical
shape, whereas the second one concerns a dielectric cylinder
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illuminated by a plane wave. Section IV contains a few con-
cluding remarks.

II. THE FUNDAMENTALS

Classical electromagnetic behavior is governed by the four
macroscopic Maxwell equations and the constitutive relations.
We restrict the analysis to nonmagnetic, charge-free, linear, and
locally isotropic media. However, these assumptions are not re-
strictions imposed by the method. We have

(1)

(2)

where and are the macroscopic electric (normalized with
the free space intrinsic impedance) and magnetic fields, re-
spectively, and is the index of refraction of the medium. All
spatial coordinates have been normalized with the free-space
wavelength , while is the time variable normalized with the
temporal field oscillation period ( is the speed of light
in vacuum). The electromagnetic solution is determined by the
following material-dependent general boundary conditions [19]
(see Fig. 1):

(3)

(4)

(5)

(6)

where
electric surface current density;
electric surface charge density;

and surface normal vectors;
where , is the permittivity.

To introduce the numerical scheme, we consider the
following partial differential equations in a 1-D Cartesian
coordinate system with multiple materials (see Fig. 2):

(7)

For simplicity, it is assumed that each area is homogeneous
with respect to electromagnetic properties of the medium, in this
case the index of refraction. We define our computational do-
main to include the physical space, . The gridline con-
tains segments where . In the inte-
rior of the regions we apply the staggered scheme such that the
electric and magnetic field points alternate, separated by ,
as second-order staggered schemes for Maxwell’s equations are
more attractive in terms of accuracy and stability [20]. Each re-
gion has two outer points within its area, before or on the ma-
terial boundaries on its left and right side. These outer points
can either be “electric or magnetic field points.” Each area is
then assigned two values,and , where is the distance
from the left boundary to the first point in the area and the
distance from the right boundary to the last point in the area.
Obviously, values are to be found within . It is possible
to find finite difference weights to evaluate spatial derivatives

Fig. 1. Boundary between regions 1 and 2 with surface normal vectors.

Fig. 2. Mapping in 1-D space composed of several areas (subspaces) with
different refractive indexes. A staggered grid is defined in a Cartesian coordinate
system.

of any order , approximated to any level of accuracy at any
point with the help of an algorithm based on Lagrange inter-
polation polynomials [21]. The point need not be a grid point.
We shall exploit this to make interpolations and extrapolations
needed to get rid of the staircasing problem and apply the cor-
rect electromagnetic boundary conditions.

A. Boundary Between Two Dielectrics

In the case of a boundary between two dielectrics at(see
Fig. 2), the boundary conditions state that the tangential elec-
tric and magnetic fields are continuous at material boundaries
[19]. We consider the spatial second-order accurate case. In this
case all spatial derivatives at inner points in each area are com-
puted as in the Yee scheme with two symmetrically surrounding
points. Spatial derivatives at the outer points are evaluated along
the gridlines using the following approximations of first-order
accuracy where we apply the boundary conditions. We describe
the case where area“ends with a magnetic field point ”
and area “starts with an electric field point .” The re-
versed situation is treated similarly. At the field position of
we assume

(8)
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where is the tangential magnetic field value that is extrap-
olated from within area “I” to the material interface (at) as

(9)

which is a linear extrapolation. Similarly, at the field position of
we have

(10)

where is the tangential electric field value that is extrapo-
lated from within area “I + 1” to the material interface (at) as

(11)

which is a linear extrapolation. This leads to (12)–(15). In eval-
uating the field derivatives at outer points in (12) and (13), we
apply the electromagnetic boundary conditions such that field
information is communicated between the areas at the interface,
with area getting tangential electric field information
from area , while area gets tangential magnetic field
information from area as

(12)

(13)

(14)

(15)

Here (14) and (15) represent one-sided extrapolations that
are subsequently used in (12) and (13) to updateand .
Looking at the denominators in (12) and (13), we notice that as

values tend to 0 or 0.5 the fractions remain finite (an average
refractive index is used in rare cases where gridpoints coincide
with the material boundary), indicating the well-posedness and
stability of this scheme. A similar scheme is used in the case
where the first (last) point of an area is a magnetic(electric) field
point.

B. Boundary Between a Dielectric and a Perfect Electric
Conductor

In the case of a boundary between a dielectric and a per-
fect electric conductor (PEC) at (see Fig. 2), the boundary
conditions express that the tangential electric field is zero [19].
The spatial derivatives at these outer points are evaluated using
the following approximations of first-order accuracy where we
apply the boundary conditions. In a situation where area
is filled with a PEC material and areacontains a dielectric,
all fields in area are zero, and following the exact same
approximations as in the previous case with a material interface
between two dielectrics, but where tangential electric fields are
zero, we have the following approximation:

(16)

(17)

Fig. 3. PEC cavity filled with two dielectrics.

In the next situation, where areais filled with a PEC material
and area contains a dielectric, all fields in areaare zero
and we apply the following approximation:

(18)

C. PEC Cavity Filled with Two Dielectrics

Fig. 3 shows a PEC cavity with two dielectric materials of
refractive indexes and , respectively. The PEC walls are
located at and , and the dielectric material
boundary is at in a geometry that is invariant in the-
and -dimension. A staggered grid where electric field points
are located at and is used to solve the set of (7),
where is the refractive index of the medium. The boundary
conditions for the fields express that the tangential electric field
is zero at the PEC walls, while all tangential field components
are continuous at . When and , the
analytic solution to this problem is

(19)

(20)

where and and

(21)

(22)

(23)

(24)

To determine when the refractive indexes are defined, we
solve the following transcendental equation numerically:

(25)

We take , and
and define the

error as

(26)
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Fig. 4. L error as a function of time for the new and the classical FDTD
methods for the PEC cavity filled with two dielectrics for resolutions of 20, 40,
and 80 ppw.

to estimate the numerical errors for the Yee scheme and the
new technique. The fields experience a jump at the material
interface and different velocities of propagation together with
different material wavelengths in each homogeneous area, in
each of which the solution is smooth. In the classical FDTD
method based on the Yee scheme, the fields are approximated
by a second-order polynomial, but the material interface does
not necessarily coincide with a grid point for different choices
of resolution, and the spatial derivatives are taken across the
material interface around which the material parameters are
averaged. In fact, the poorly resolved representation of general
geometric structures in the discretized computer model cannot
be avoided once a fixed coordinate system is chosen, unless
a multidomain approach is considered. In the present new
method, the same grid layout as the one for the classical FDTD
is used, but the intersection of the material interface (object
contour) with the gridline is detected, and two areas of different
refractive indexes are defined together with the line segment
characteristics according to the approach discussed previously
in this section. For each area, twovalues are computed once
the grid layout and resolution have been chosen. The only
main difference between the classical scheme and the new
method is in the technique of treating spatial derivatives at
outer points of each area filled with a homogeneous dielectric.
In this manner, the material interface is represented correctly,
and field boundary conditions can be applied correctly. Fig. 4
shows the error as a function of time for the classical FDTD
(Yee scheme) and the new second-order schemes, respectively,
for the PEC cavity filled with two dielectrics with resolutions
of 20, 40, and 80 points per wavelength (ppw). It is noticeable
that the Yee scheme is not of spatial second-order accuracy
but rather only of first-order accuracy in this case where two
obejcts with different materials are present. This is due to the
fact that the boundary conditions are not properly satisfied,
that the material interface is not represented correctly, and that
spatial derivatives are taken across material boundaries. As

anticipated, the new second-order FDTD formulation really
shows spatial second-order accuracy, i.e., the error behaves as

. Errors at a given time decrease by a factor of four when
the number of points per wavelength is multiplied by two. Fur-
thermore, the new formulation is much more accurate because
of its correct implementation of the boundary conditions. The
order of accuracy of a numerical scheme, or the convergence
of the solution, can be recovered or at least enhanced by
improving the representation of physical structures and by the
correct application of boundary conditions at better resolved
interfaces. It is clear that for a fixed accuracy, this improvement
in convergence, even for such a simple 1-D problem, enables
the use of fewer ppw with the new method in order to solve a
computaional problem, thereby obtaining simulation times that
are quite faster, as the time step is directly proportional to the
discrete spatial step.

Regarding the numerical dispersion, it is known that the use
of second-order schemes requires more points per wavelength
to reduce errors in phase velocities. An alternative to spatial
second-order schemes can be found in fourth-order FDTD or
higher order spectral methods. A staircase free fourth-order
FDTD scheme has been developed for 1-D problems with com-
plex geometries [8], but to our knowledge no unconditionally
stable 2-D schemes have been designed yet. In higher order
schemes, fields are approximated by higher order polynomials.
Thus, more terms of the Taylor expansion are included, thereby
reducing the numerical dispersion, as the local computation of
fields is based on global field information at all grid points.
The numerical dispersion can be reduced to a minimum with
spectral methods [10]–[15], and complex geometries can be
modeled with the use of a multidomain approximation, in
which staircasing is avoided, boundary conditions can be set
correctly at the sub-domain boundaries, and where character-
istic variables and proper mapping of geometries from real
physical coordinates to local curvilinear coordinate systems
can be applied.

III. N UMERICAL MODELS IN 2-D SPACE

In Fig. 5 is illustrated a model representation of physical
structures in the computational window. The top figure shows
the physical structure. The second one shows the structure rep-
resented with a discrete staircase approximation typical for the
Yee method where each cell is assigned one refractive index
value (the structure is represented by the set of cells that are
crossed). The bottom figure shows the physical structure repre-
sented accurately without staircasing where intersections of the
contour of the object and the gridlines have been marked. The
physical representation with the staircased profile clearly needs
a much higher resolution to be an acceptable model for the phys-
ical geometry and it requires more data storage and longer sim-
ulation times. Furthermore, the exact application of general ma-
terial boundary conditions is not possible, and the taking of spa-
tial derivatives across dielectric material boundaries is a source
of errors in computational simulations for general geometrical
shapes.

For PEC structures, a recent study showed the degradation of
numerical accuracy due to the staircasing effect [18] in a 2-D
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Fig. 5. Model representations of physical structures in the computational
window. The top figure shows the physical structure. The middle figure
shows the structure represented with a staircase approximation typical of
the Yee method. The bottom figure shows the physical structure represented
accurately without staircasing. The physical representation with the staircased
profile needs a higher resolution to be an acceptable model for the physical
geometry. A Cartesian coordinate system is defined with electromagnetic field
components.�x and�z are the discrete spatial steps.

Fig. 6. Two-dimensional mesh for the new FDTD method in a Cartesian
coordinate system.

problem. If we use the mesh configuration depicted in Fig. 6
with the three field components , , and , we can apply
the 1-D technique presented in the previous section to each grid-
line one by one, dimension by dimension, whereis the field
component used for connectivity, i.e., for passing field informa-
tion from one line in one dimension to another line in the second
dimension. In Fig. 6 a gridline that is parallel to is denoted
by x(z)-line, with and being indexes. If we wish to solve
the TE equations on the form

(27)

(28)

(29)

numerically, we need to update with
along each xline for all , then update

with along each
zline for all , at each time step, where special attention
must be given to outer points of each area (subspace) along
each gridline. A gridline must have some data associated with
it, i.e., its number of areas, and for each of these, twovalues,
a logical variable indicating whether the last point in an area
before the material boundary is an electric or a magnetic field
point and the global index of this last point. A preprocessing
operation should be done to determine these records for each
gridline, where intersections of object contours and gridlines
must be detected. Any one area must contain at least two
electric and two magnetic field points. The new technique
follows the principle of the method of lines and permits a
multidomain approach in a Cartesian grid. With this new
formulation the staircasing error is eliminated and boundary
conditions are satisfied and implemented correctly. The only
errors introduced are–dependent extrapolation errors at ma-
terial boundaries. When material distributions are arbitrary and
large objects or fine subwavelength structures are under study,
the comparison of error levels for the classical Yee scheme and
the new technique shows significant improvement in favor of
the newly formulated method. For a fixed accuracy, the new
FDTD formulation will need many fewer points per wavelength
than the Yee scheme to simulate the electrodynamics.

We use fourth-order accurate Runge–Kutta methods for the
time derivatives [22]. The stability criterion that we apply for
2-D time-domain problems is [23]

(30)

where is the discrete time step, is the speed of light in
vacuum, and where we choose the smallest spatial step. For a
more detailed mathematical analysis on the properties of the
method see [23] in which the stability of the scheme is proven.
It is worth noticing that the maximal allowed time step for the
new method is 20/13 times larger than that of the classical Yee
scheme. The spatial step is chosen such that the geometries and
the minimal material wavelength are resolved to an acceptable
degree of accuracy.

For continuous-wave illumination in total field/scattered field
formulations, the incident field must be added or subtracted at
a few discrete points in the computational domain, at each in-
termediate step in the Runge–Kutta iteration for each time step.
At these discrete points, the incident field that is added or sub-
tracted must be computed with the same Runge–Kutta algorithm
to get incident field data that are synchronized at the time cor-
responding to each step of the Runge–Kutta iteration.

In the following analysis we use a total-field/scattered-field
formulation with a perfectly matched layer [15] terminated with
a PEC wall for the new formulation and the FDTD model based
on the Yee scheme developed in [5].
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Fig. 7. Perfect electric conductor (PEC) resonator of cylindrical shape.

A. A PEC Resonator of Cylindrical Shape

The new FDTD formulation has been tested in a case study
where a cylindrical perfect electric conducting resonator is de-
fined in the plane as shown in Fig. 7. It is assumed that
the electromagnetic field is composed of transverse electric (TE)
waves. The structure is invariant in the-direction, and the elec-
tromagnetic field is indepedent of the-coordinate. The free
space wavelength-normalized radii of the two cylinders are

and . For and , magnetic and elec-
tric fields are assumed to be zero. For , the space
is filled with air, and the fields behave according to Maxwell’s
curl laws, while at and metallic PEC boundary
conditions are imposed. The analytical solution for this simple
problem is rather trivial [8]. The application of the new method
in this case is done by defining a square computational domain
that includes the outer cylinder. The origin of the Cartesian grid
is then placed at the center, and for each gridline the intersec-
tions with the object contours are detected, and its number of
areas (line segments), thevalues, etc., are recorded. In this
particular case, areas on a gridline are defined as the line seg-
ments along which the fields are either existant ( and

) or nonexistant ( and ). In the latter
case, no computations are needed along the corresponding line
segments. The new method is then applied as explained for 2-D
problems with the 1-D scheme introduced in Section II, in which
there is an interface between a dielectric (air in this case) and a
PEC wall (the cylinder contours). A preprocessing routine de-
termines all the necessary line-segment records.

Fig. 8 shows the error of the electric field component as a
function of time for the new and the classical FDTD schemes for
different resolutions, where denotes the spatial step. It is ap-
parent that the new formulation exhibits errors that are more than
one order of magnitude smaller than the Yee scheme. Note that
as the resolution is increased the error decreases significantly for
the new FDTD scheme, where spatial second-order convergence
isapparent;whereas this isnot thecase for theYeescheme,which
approaches an error below that of first order accuracy.

Fig. 8. L error for the new and the classical FDTD schemes for the (PEC)
resonator of cylindrical shape whereh is the spatial step.

Fig. 9. Plane wave incidence on a dielectric cylinder.

B. Plane Wave Incidence on a Dielectric Cylinder

Fig. 9 shows a plane wave propagating in a medium with re-
fractive index toward a dielectric cylinder with refrac-
tive index and radius . The angle of incidence is .
We assume that the electromagnetic field and the geometry are
invariant in the -direction. We have

(31)

(32)

(33)

where the electric field has been normalized with the intrinsic
impedance of free space, , is the angle defined
in Fig. 9, is the time variable normalized with the temporal



DRIDI et al.: STAIRCASE-FREE FINITE-DIFFERENCE TIME-DOMAIN FORMULATION 755

Fig. 10. L error as a function of time for the second-order Yee scheme and
the new FDTD formulation.

oscillation period , and all coordinates have been normal-
ized with the free space wavelength, while is the refractive
index. Again, the analytical time harmonic solu-
tion for this simple problem is rather trivial [8]. The applica-
tion of the new method to this problem is similar to the case of
the PEC cylindrical resonator, except that the definition of areas
(line segments) is now made on the basis of the dielectric mate-
rial, and that the finite difference schemes used on each gridline
are the 1-D schemes presented in Section II for a material inter-
face between two dielectrics.

Fig. 10 shows the error of the component as a func-
tion of time for the Yee scheme and the new FDTD formulation
of spatial second-order accuracy for different resolutions, i.e.,
20 and 40 ppw. The plots start at where all fields have
reached steady state and end at , but the levels have
been monitored until . Fig. 10 clearly shows that the
Yee method, which is a spatial second-order accurate method in
a homogeneous medium, does not show second-order conver-
gence when applied to structures with more general geometries
and different materials. This is partly due to the fact that it does
not allow the electromagnetic boundary conditions to be applied
correctly, and partly due to the staircasing problem. The error
levels of the new second-order accurate FDTD method are ap-
proximately five times lower for 20 ppw and more than ten times
lower for 40 ppw than the ones for the Yee scheme. As the resolu-
tion increases the new formulation increases its accuracy relative
to the Yee scheme. The maximal allowable time step used with
the new method is 20/13 times larger than that of the Yee scheme,
and in order to achieve the accuracy of the new method for 20
ppw, the Yee scheme must use 85 ppw. Several performance tests
have been done to compare the simulation times, and it is con-
cluded that the new method is about 2.5 times faster for the actual
problem on a 600-MHz Pentium PC. The new technique offers
a fairly simple way of improving some of the deficiencies of the
classical FDTD method for 2-D problems.

It is clear thatasmany moreobjects of general geometries (that
do not necessarily have contour lines that follow the gridlines,

or fit on the grid points) and different materials are introduced
into the computaional domain, numerical errors grow even more
due to the staircasing effect and the lack of application of mate-
rial boundary conditions in the classical FDTD method. These
errors have to be added to the numerical dispersion inherent in
low-order schemes. This must be expected to be even more pro-
nounced for 2-D problems with TM polarized fields, and in 3-D
models with general polarizations with general material bound-
aries with surface electric or magnetic sources.

IV. CONCLUSION

A stable multispace staircase-free FDTD method of spatial
second-order accuracy has been developed. Contrary to the clas-
sical Yee scheme, it allows the correct application of electro-
magnetic boundary conditions. Moreover, it does not represent
the physical structure using a staircase approximation, but takes
into account the exact geometry, and thus significantly reduces
the required number of points per wavelength to accurately re-
solve the wave and the geometry, therefore allowing simula-
tion times that are about two to three times faster than that
of classical methods. Numerical experiments have shown that
the improvement of the computational representation of geome-
tries, avoiding staircasing and enabling the correct application
of boundary conditions, can improve the convergence of the nu-
merical methods significantly, and allows the use of lower reso-
lutions. The new formulation is applicable to general geometries
with arbitrary distributions of material in Cartesian coordinate
systems. Numerical simulations show that it exhibits error levels
that are orders of magnitude lower than what was achieved up
until now with the classical Yee scheme for very general phys-
ical problems involving dielectrics as well as perfect electric
conductors. The test cases in this paper have included a 1-D
PEC cavity filled with two dielectrics, plane wave incidence on
a dielectric cylinder, and a PEC resonator of cylindrical shape
in 2-D space, but the new technique has also been applied to
study the physics of complex subwavelength diffractive optical
elements embedded in dielectric waveguiding material as well
as photonic crystal/bandgap structures. Non-homogeneous grid
layouts are also possible as the local spatial resolution in each
subspace can be varied, as long as the discrete time step is varied
accordingly with respect to the stability criterion.
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