
On the Mathematical Analysis and Optimization of

Chemical Vapor Infiltration †

Adi Ditkowski,‡ David Gottlieb §, and Brian W. Sheldon ¶

.

Key Words: Composites, chemical vapor deposition (CVD), Optimization, Computer

simulation, Theory.

†Research supported by DOE 98ER25346
‡Division of Applied Mathematics,Brown University Providence, RI 02912
§Division of Applied Mathematics Brown University Providence, RI 02912
¶Division of Engineering Brown University Providence, RI 02912



ABSTRACT

In this paper we present an analysis of the partial differential equations that describe

the Chemical Vapor Infiltration (CVI) processes. The mathematical model requires at least

two partial differential equations, one describing the gas phase and one corresponding to the

solid phase.

A key difficulty in the process is the long processing times that are typically required.

We address here the issue of optimization and show that we can choose appropriate pressure

and temperature to minimize these processing times.
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I Introduction

A variety of materials are produced by infiltration processes. In these techniques a

fluid phase (i.e., a gas or a liquid) is transported into a porous structure, where it then

reacts to form a solid product. These methods are particularly important for producing

composite materials, where the initial porous perform is composed of the reinforcement phase

(i.e., fibers, whiskers, or particles) and infiltration produces the matrix [1], [2]. A detailed

assessment of the relevant reaction and mass transport rates during infiltration requires

mathematical modeling, using a minimum of two coupled partial differential equations which

describe changes in the reactant concentration and the solid structure as a function of both

position and time. This type of modeling can also be extended to analyze the optimization

and control of infiltration processes.

The research presented here specifically considers optimization for a set of two PDE’s

which describe isothermal, isobaric chemical vapor infiltration (CVI). In this process a vapor-

phase precursor is transported into the porous preform, and a combination of gas and surface

reactions leads to the deposition of the solid matrix phase. During infiltration the formation

of the solid product phase eventually closes off porosity at the external surface of the body,

blocking the flow of reactants and effectively ending the process. This is a key feature of

most infiltration processes. Isothermal, isobaric CVI often requires extremely long times, so

it is generally important to minimize the total processing times.

This paper considers the problem of determining the optimal pressure and temperature

which correspond to the minimum infiltration time. From a practical perspective, the nature

of the porous preform is often predetermined by the intended application (e.g., the physical

dimensions and the fiber size are invariants). Thus, the process can only be controlled with

process variables: temperature, pressure, and gas composition. Note that the pressure and

temperature determine several different physical quantities in the model, such that the a

general understanding of the optimum conditions is not immediately obvious from the basic

formulation.

We adopted two strategies to solve the optimization problem. In the first we get an

asymptotic approximation, valid when α2 ( defined in section 2) is small. We then used the

explicit form of the asymptotic solution to get a functional of the pressure and temperature

that estimates the optimal conditions for the process. In the second approach we get the
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functional numerically.

This paper is organized as follows: Section 2 presents the basic set of two partial dif-

ferential equations used to model isothermal, isobaric CVI (including initial and boundary

conditions). A definition for a successful process and a discussion on the optimization prob-

lem is given. In Section 3 an analysis of the optimization problem is given. The analysis

performed is based on asymptotic expansions as well as computations. The results of the

analysis are optimal working pressure and temperature. In Section 4 the effects of powder

formation in the analysis are included in the analysis; here too the pressure and temperature

to minimize the final time are provided. In Section 5 a discussion of the significant of these

results is presented.

II Formulation

A mathematical description of infiltration requires one or more partial differential equa-

tions which describe the evolution of the matrix (i.e., the solid phase), and one additional

partial differential equation for each chemical species in the fluid phase. For a simple pore

structure, the continuity equation for species i is

∂(εCi)

∂t
+∇ ·Ni =

nr∑
r

νirRr (1)

where t is time, ε is the void fraction of the media, Ci and Ni are the concentration and the

flux of species i resprctively, nr is the number of the gaseous species, νir is the stoichiometric

coefficients for the ith gaseous species in the rth reaction, and Rr represents the volumetric

reaction rate of reaction r.

The basic partial differential equation(s) which describe reaction and mass-transport in

porous media (i.e., the fluid phase) are well-established [3], [6]. For example, the Dusty-Gas

model [7] is typically used to describe multicomponent diffusion and convection in a porous

body.
Ni

DKi

+
RT

P

∑

j 6=i

CjNi − CiNj

DMij

= −∇Ci − CiBe

µDKi

∇P (2)

Where R is the gas constant, Be is the permeability of the media, µ is the viscosity of the

mixture P is the total pressure and T is the temperature. DMij
and DKi

are the effec-

tive binary diffusivity for species i and j and the effective Knudsen diffusivity of species i,

respectively.
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In this paper we consider the binary ( two gases mixture ), diffusion-limited process, with

one dilute reactant species in one spatial dimension. Under this conditions P is constant.

Describing the evolution of the matrix phase is equivalent to considering the change in

the void fraction, ε (i.e., the volume fraction of gas inside of the porous solid). The evolution

of ε is given by:
∂ε

∂t
= −uSv(ε) (3)

Where u is the rate at which the solid product grows [volume/area/time] and Sv(ε) is the

gas/solid surface area per unit volume of the porous solid.

The preforms used for CVI typically have a complex porous structure. However, a cylin-

drical pore is often used to formulate simple models. This leads to the following expression

for Sv:

Sv(ε) =
2
√

εo

√
ε

r0

(4)

where r0 is the initial pore radius and εo is the initial concentration of ε.

These assumptions leads to the following set of equations, ( For more details on the

derivation of the model see [4] ):

∂η(z, t)

∂t
= −β(t)

2
c(z, t) (5)

∂

∂z

(
f(η(z, t))

∂c(z, t)

∂z

)
= α2(t)η(z, t)c(z, t) (6)

where

z =
Z

L
(7)

c =
C(z, t)

C(0, t)
(8)

f(η) =
Pη3

3(Pη + ADT )
(9)

η =
√

ε (10)

α2 = Aα
Pe(−Q/T )

T 3/2
(11)

β = Aβ
X0Pe(−Q/T )

T
(12)

Where L is the thickness of the preform, r0 is the initial pore radius and X0 denotes the

fraction of the active gas in the inlet ( at z = 0). Q = E/R , where E is the activation
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Table I: Values of the constants.

Aα 6.35 1021 K3/2 atm−1

Aβ 3.64 1018 K3/2 atm−1 sec−1

η0 =
√

ε(t = 0) 0.85

Q 55000 K [16]
AD: 10µm diam fibers 1.54 10−5 atm/K

80µm diam fibers 1.93 10−6 atm/K
200µm diam fibers 7.7 10−7 atm/K

energy. DD is a lumped constant which is proportional to the ratio of the molecular and

Knudsen diffusivities. Note that α2 is dimensionless and that β has units of inverse time.

The time derivative in Eq. (1) has been removed in Eq. (6), which is permissible because

a pseudo steady state C profile is achieved in a short amount of time (i.e., compared to

the time scale over which ε changes) [5]. Transforming ε to η simplifies equation (5). Note

that η is proportional to Sv, so η can be viewed as a dimensionless surface area per volume.

Values of the constants in Eqs.(9) - (12) are given in Table I, for the case of carbon CVI

from methane, with a preform thickness of 2 L = 3mm .

The system (5), (6) is subject to the initial condition

η(z, 0) = η0(z). (13)

This paper treats only the case of a uniform initial condition, η0(z) = η0.

The boundary conditions most often used for CVI models are to fix the concentration at

the outer surface of the preform, and to assume that diffusion occurs in from two opposite

sides, such that there is no net flux in the middle of the preform (i.e., at Z = L, where L is

the half-thickness of this ’virtual’ preform). Thus the boundary conditions are:

c(0, t) = 1 (14)

∂c

∂z

∣∣∣∣∣
z=1

= 0. (15)

With this model it can be shown that:
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1. The value of the void function in the inlet z = 0, is

η(0, t) = η0 − β

2
t (16)

2. A classical solution exists and is unique for any time t < tc, tc = 2η0

β
.

3. At the critical time tc = 2η0

β
the void function η vanishes at z = 0, the inlet closes

completely, and the process ends.

4. The void function η and the concentration function c are bounded from above and

below. 0 < c(z, t) ≤ 1, η(0, t) ≤ η(z, t) ≤ η0 for t < tc = 2η0

β
.

5. For any time t < tc, the void function η(z, t) is monotonically increasing function of

the spatial variable z.

6. The concentration function c(z, t) is monotonically decreasing function of the spatial

variable z and

c(z, t) ≤ cosh γ (1− z)

cosh γ

where

γ =

√
η0

f(η0)
α (17)

The existence and uniqueness were proved by Marion (private communication) the rest

of the properties were proven in [12] in Lemma1 - Lemma 6.

A better lower bound on the concentration function c(z, t) is needed for our optimization

technique. This will be done in the following theorem:

Theorem 1 Let c(z, t) be the solution of (5) for t < tc, then it is bounded from below by

c(z, t) ≥
[
cosh γ (1− z)

cosh γ

] f( η0 )

f( η(0,t) )

(18)

Where γ is defined in (17)
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Proof: We first note that the function

cosh γ (1− z)

cosh γ

solves the equation

∂

∂z

(
f ( η0 )

∂ w

∂z

)
− α2 η0 w = 0 (19)

With the boundary conditions w(0) = 1 , w
′
(1) = 0. To complete the proof we need the

following comparison Lemma:

Lemma 1 Let, for 0 ≤ z ≤ 1

∂

∂z

(
a(z)

∂ u

∂z

)
− b(z) u = 0 ; 0 < b ≤ B (20)

∂

∂z

(
A(z)

∂ w

∂z

)
− B(z) w = 0 ; 0 < a ≤ A (21)

Where a(z), b(z), A(z), B(z) are C1(0, 1) functions.

With boundary conditions:

u(0) = w(0) > 0 ,

∂

∂z
u(1) =

∂

∂z
w(1) = 0 .

Then:

u , w > 0 ,
∂

∂z
u ,

∂

∂z
w < 0

and

w(z) ≤ w(0) e
∫ z

0
a
A

u′
u

dζ (22)

u(z) ≥ u(0) e
∫ z

0
A
a

w′
w

dζ (23)

Proof We quote Lemma 3 in [12] that shows that u , w > 0 and ∂
∂z

u , ∂
∂z

w < 0 .

By multiplying eq. (20) by w, eq. (21) by u and subtracting the two equations we get:

w ( a u′ )′ − b u w − u ( Aw′ )′ − B u w = 0 ,
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which is equivalent to

( w au′ )′ − ( uA w′ )′ = ( b−B ) u w + ( a − A ) u′ w′ ≤ 0

Then by integrating between z and 1 and making use of the boundary conditions we get:

w a u′ − uAw′ ≥ 0 .

we get eq. (22) and (23) by solving this inequality.

From the Lemma it is clear that

u(z) ≥ w(z)
max A(z)
min a(z)

We are ready now to prove the theorem. We consider equations (6) and (19) and identify

A(z) = f(η0) , B(z) = α2η0 , u = c(z, t).

and

a(z) = f(η) , b(z) = α2η , w =
cosh(γ(1− z))

coshγ

Since η ≤ η0 and f( η(0, t) ) ≤ f(η) ≤ f(η0) we can apply Lemma 1. to get (18)

2

The parameters α2 and β depend on the three key process variables: T , P , and X0.

Process optimization during CVI is achieved by setting these variables to optimal values. In

isothermal, isobaric CVI the infiltration kinetics are controlled by diffusion and the deposition

reaction. To achieve relatively uniform infiltration, diffusion must be fast relative to the

deposition rate. This is typically accomplished by choosing processing conditions that result

in a slow deposition rate, which usually leads to long infiltration times. Thus, the primary

basis for process optimization is to obtain the desired amount of infiltration in the shortest

possible time.

We will thus define what is a successful process:

Definition: A process is called successful if for some time tf < tc

η(z1, tf ) ≤ k1η0 (24)

η(0, tf ) = k0η0 (25)
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k0 << 1, k0 < k1. 0 < z1 ≤ 1

Equation (24) states that the final values of the void function η should be small in the

interval between the inlet and the point z1 (note that η(z, t) is monotonically increasing

function of the spatial coordinate z). In most problems of interest z1 = 1. Conditions (24)

and (25) state that the void function should be uniformly small.

We can determine explicitly the final time, tf , in fact from (16), (25) :

tf = (1− k0)η0
2

β
. (26)

Note that the time for the process to end decreases as a function of β ( itself a function of

the temperature and pressure, given in (12) ).

In the next theorem we will establish the fact that one can always find parameters α

and β ( actually, pressure and temperature that determine α and β ) to achieve a successful

process, in fact we can state :

Theorem 2 For all 0 < k0 < k1 < 1 there exist temperature and pressure such that there

is a successful process.

Proof

Property 1. stated that η(0, t) = η0 − β
2
t, so we can always satisfy (24) for the final time

tf defined in (26). The harder part is to show that we can always choose α to satisfy the

uniformity condition (25).

By integrating eq. (5) we get

η(z1, tf ) = η0 −
∫ tf

0

β

2
c(z1, t) dt (27)

We change variables

τ = E(t) = η0 − β

2
t , (28)

and note that E(0) = η0, E(tf ) = k0 η0, dτ = −β
2
dt. From Theorem Theorem.10 we get:

η(z1, tf ) = η0 −
∫ η0

k0 η0

c(z1, τ) dτ

≤ η0 −
∫ η0

k0 η0

[
cosh γ (1− z1)

cosh γ

] f( η0 )

f( η(0,t) )

dτ

= η0 − (1− k0) η0

[
cosh γ (1− z1)

cosh γ

] f( η0 )

f( η(0,t) )
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For a successful process we demand that η(z1, tf ) ≤ k1 η0, this will be satisfied if we choose

α such that : [
cosh γ (1− z1)

cosh γ

] f( η0 )

f( η(0,t) )

≥ 1− k1

1− k0

.

Since 1−k1

1−k0
< 1 we have to find α s.t.

cosh γ (1− z1)

cosh γ
≥

[
1− k1

1− k0

] f( η(0,t) )
f( η0 )

α can be made small enough such that the left hand side will be as close to 1 as needed.

The goal of the analysis in the following sections is to find the temperature and pressure

that minimize the final time tf for achieving a successful process.

III Analysis of the Optimization Problem

The final time, tf is given by (26) and it is a decreasing function of β(P, T ), given in

(12). However β can not be taken arbitrary large without violating the uniformity condition

(24). The optimization problem involves therefore maximizing β(P, T ) with the constraint

η(z1, tf ) ≤ k1 η0. However the expression for η(z1, tf ), (27), tf is an integration boundary,

which makes it a non-standard optimization problem. In order to overcomethis difficulty

we make a change of variable, (28), and use the definition for a successful process, (25), to

convert the integral boundaries to constants, as was done in the proof for Theorem 2. This

change of variable converts the optimization problem to a standard one.

In order to express this constraint explicitly in terms of P and T we can use either by

asymptotic expansions or by direct numerical solution of the system (5), (6).

III.a Asymptotic Expansions

In most of the application the parameter α2 is small, and therefore it makes sense to

expand the solutions in power of α2. The formal expansion t the order of α2 is:

c(z, t) ∼ 1− α2

(
z − z2

2

)
E

f(E)
(29)

η(z, t) ∼ E + α2

(
z − z2

2

) ∫ η0

E

Ê

f(Ê)
dÊ
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and for f(η) =
Pη3

3(Pη + ADT )

= E(t) + 3 α2

(
z − z2

2

) [
log

(
η0

E(t)

)
+

ADT

P

(
1

E
− 1

η0

)]
(30)

Where, again,

E(t) = η0 − β

2
t (31)

In the following theorem we shall prove that the asymptotic expansion is accurate for

order O(α4)

Theorem 3 For all 0 ≤ z ≤ 1, t ≤ tf the difference between the exact solution and the

asymptotical approximation is O(α4) .

Proof By integrating (6) between z to 1, dividing by f(η) and integrating between 0 to

z one gets

c(z, t) = 1 −
∫ z

0

1

f (η(ζ, t))

∫ 1

ζ
α2 η(ξ, t) c(ξ, t) dξ dζ (32)

and for η we get, by integrating (5) from 0 to t:

η(z, t) = η0 − β

2

∫ t

0
c(z, τ) dτ = η0 −

∫ η0

E
c(z, e) de . (33)

In (32) we use the bounds, c ≤ 1 that E ≤ η ≤ η0 to get

c ≥ 1 − α2 η0

f( E )

(
z − z2

2

)
, (34)

and upon substituting (34) into (33) one gets

η ≤ E + α2 η0

(
z − z2

2

) ∫ η0

E

1

f(e)
de . (35)

The bounds (34) and (35) can be further refined. Consider, again, the equality (32), but

now we use the estimate for η from above (35) and the estimate from below to c (35) to get

c ≥ 1 − α2 E

f( E )

(
z − z2

2

)
− α4

η0

∫ η0

E
1

f(e)
de

f( E )

(
z

3
− z3

6
+

z4

24

)
. (36)

In the same way we can get a better estimate estimate from below in c :

η ≤ E + α2

(
z − z2

2

) ∫ η0

E

e

f(e)
de + α4 η0

(
z

3
− z3

6
+

z4

24

) ∫ η0

E

∫ η0

Ẽ
1

f( e )
de

f(Ẽ)
dẼ . (37)
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To get an upper estimate on c we use estimate (34) together with η ≥ E and

f(η) ≥ f

(
E + α2 η0

(
z − z2

2

) ∫ η0

E

1

f(e)
de

)

to get

c ≤ 1 − α2 E
∫ z

0

(1− ζ)

f(E + α2 η0

(
ζ − ζ2

2

) ∫ η0

E
1

f(e)
de)

dζ +

α4 E η0

∫ z

0

1

f(E + α2 η0

(
ζ − ζ2

2

) ∫ η0

E
1

f(e)
de)

(
1

3
− ζ2

2
+

ζ3

6

)
dζ

≤ 1 − α2 E
∫ z

0

(1− ζ)

f(E + α2 η0

(
ζ − ζ2

2

) ∫ η0

E
1

f(e)
de)

dζ + α4 E η0

f( E )

(
z

3
− z3

6
+

z4

24

)
.

(38)

Using the Lipschitz continuity of 1/f we get:

c ≤ 1 − α2 E

f( E )

(
z − z2

2

)
+

α4 E η0

[
L

(
z2

2
− z3

2
+

z4

8

) ∫ η0

E

1

f(e)
de +

1

f( E )

(
z

3
− z3

6
+

z4

24

) ]

(39)

where L is the Lipschitz constant of 1/f , and by substituting into Eq.(33)

η ≥ E + α2

(
z − z2

2

) ∫ η0

E

e

f(e)
de +

α4 η0

∫ η0

E
Ẽ

[
L

(
z2

2
− z3

2
+

z4

8

) ∫ η0

Ẽ

1

f(e)
de +

1

f( Ẽ )

(
z

3
− z3

6
+

z4

24

) ]
dẼ

(40)

Thus the difference between the exact solution and the asymptotical approximation is O(α4).

In the next subsection the numerical results and the asymptotic expansions are compared,

to demonstrate the validity of the expansions in the range of relevant α2.

The asymptotic expansion (30) is used to get an explicit form for the uniformity constraint

(24) in terms of the temperature T and the pressure P . Substituting (30) into (24) gives:

k0η0 + 3α2(z1 − z2
1/2)

[
log

(
1

k0

)
+

ADT

P η0

(
1

k0

− 1
)]

≤ k1η0 (41)

Substituting α2 from (11) yields the following form for the uniformity constraint

J(P, T ) ≤ (k1 − k0)η0. (42)
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where, using the explicit form of f(η), see (9), we get

J(P, T ) = 3Aα
P

T 3/2
e−Q/T (z1 − z2

1/2)

[
log

(
1

k0

)
+

ADT

P η0

(
1

k0

− 1
)]

(43)

Thus uniformity is assured if

P ≤ B0

B2

T 3/2eQ/T − B0

B2

T , (44)

where

B0 =
η0(k1 − k0)

Aα3(z1 − z2
1/2)

(45)

B1 =
AD

η0

(
1

k0

− 1) (46)

B2 = log(
1

k0

). (47)

These results can now be used to approximate the temperature and pressure that min-

imize the time for a successful process. Recall (see (26)) that the final time tf is inversely

proportional to β given in (12). The final time tf is therefore minimized if the function

F (P, T ) =
P

T
e−Q/T (48)

is maximized under the uniformity constraint (25). Inspection of (48) shows that in order

to maximize β we have to take the equality sign in (44). Substituting this into (48) , it is

easily verified that the following function must be maximize:

G(T ) =
B0

B2

T 1/2 − B1

B2

e−Q/T (49)

This indicates that the final time tf to achieve a successful process is minimized by

choosing temperature and pressure satisfying

T 3/2eQ/T =
B1Q

B0

(50)

P =
B1

B2

(Q− T ) (51)

Moreover the minimal final time tmin
f is given by

tmin
f =

2(1− k0) log(1/k0)

k1 − k0

AαQ

AβX0

3(z1 − z2
1/2)

1

T 1/2(Q− T )
(52)

Where the temperature T is given by (50).
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2

The explicit formulas (50)-(52) lead to the following observations:

1. The minimum final time, tmin
f , decreases as AD decreases. (i.e. as the molecular

diffusion becomes dominant. )

2. tmin
f decreases as k1 increases. This reflects the fact that increasing k1 amounts to

relaxing the uniformity condition.

3. As z1 increases toward z1 = 1, the minimum final time tmin
f increases.

III.b Computational Results

In the previous subsection the asymptotic expansion of η was used to define a functional

J(P, T ) such that each pair P, T that satisfies J(P, T ) ≤ (k1 − k0) η0 leads to a solution

that satisfies the conditions for a successful process, (24), (25). The optimal P and T was

then obtained based on the final time. This result is only approximately correct since the

asymptotic expansion was used to approximate condition (24). This section uses numerical

solutions of (5),(6) to create a ’numerical J functional’, ( i.e. a functional relation between

P and T that ensures a successful process ).

Two algorithms were used to solve this problem: one based on a finite difference approx-

imation and one on spectral methods. These are described in the Appendix. The schemes

were run with k0 = 0.1, z1 = 1 and k1 = 0.15 or 0.7. Note that k1 = .15 corresponds to

relatively uniform infiltration while k1 = .7 is relatively non-uniform. Although most appli-

cations require relatively uniform infiltration (i.e., lower k1), there are some cases where a

non-uniform profile may be desirable. Two reasons for a higher k1 are that it enables faster

infiltration times, and it produces materials with lower density. For example, both of these

attributes are desirable during the formation of thin carbon-carbon composites for bipolar

plates in proton exchange membrane (PEM) fuel cells [17].

Three values were taken for AD, 1.54 ∗ 10−5, 1.93 ∗ 10−6 and 7.7 ∗ 10−7 ( see Table I ).

Plots of the numerical and the asymptotic J curves are presented in Figure 1, plots of tf vs.

P are presented in Figure 2.
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Figure 1: J Curves obtained both numerically (solid lines) and by asymptotic analysis
(dotted lines). Conditions on or below these lines will satisfy the uniformity condition (Eq.
(3.35)). Conditions above this line do not satisfy the uniformity condition. All cases here
correspond to X0 = 0.1, with: (a) k1 = 0.15, AD = 1.54∗10−5; (b) k1 = 0.15, AD = 7.7∗10−7;
(c) k1 = 0.7, AD = 1.54 ∗ 10−5; (d) k1 = 0.7, AD = 7.7 ∗ 10−7.

Figure 2: Times which correspond to conditions on the J curves in Fig. 1, with values
obtained both numerically (solid lines) and by asymptotic analysis (dotted lines). The filled
circles show the minimal time. (a) k1 = 0.15, AD = 1.54∗10−5; (b) k1 = 0.15, AD = 7.7∗10−7;
(c) k1 = 0.7, AD = 1.54 ∗ 10−5; (d) k1 = 0.7, AD = 7.7 ∗ 10−7.
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Table II: tf for the optimal P and T .

Numerics Asymptotics
AD k1 P T tf P T tf

1.54 10−5 0.15 6.59817 1201.69 57703.5 7.75487 1194.85 63436.4
1.93 10−6 0.15 0.83 1260.76 56363.4 0.964282 1253.56 61971.3
7.7 10−7 0.15 0.334636 1288.52 55757.3 0.373109 1282.26 61309.3
1.54 10−5 0.7 3.11577 1334.74 1416.3 7.70548 1265.71 5139.93
1.93 10−6 0.7 0.393241 1408.2 1379.66 0.965 1331.69 5014.01
7.7 10−7 0.7 0.154896 1444.02 1363.1 0.372904 1364.25 4957.04

The process is very sensitive to changes in the temperature T, as can be seen, for example,

by comparing the results for P = .1atm,T = 1309 K, vs. P = .1atm, T = 1449 K. Increasing

temperature by 140 degrees decreases the final time by a factor of 55 and produces an

infiltration profile which is much less uniform. This occurs because of the strong temperature

dependence of the deposition reaction. As the fibers size increases tf decreases slightly and

the minimal time occurs at lower pressures.

When the uniformity requirement dictates k1 = .15 in (24), the condition J(P, T ) =

(k1− k0)η0 yields P and T such that α2 ∼ .01. In this case the asymptotic expansions agree

well with the numerical results. The predicted temperature to assure uniformity differs by

only few degrees from the one obtained numerically, and tf differs by less than 10%. However

when k1 was increased to .7 the asymptotic expansion is less accurate, because, in this case,

α2 ∼ .1 is not sufficiently small (See Table II ). In all cases, however, the asymptotic results

agree qualitatively with the numerical results. The curves obtained numerically were almost

parallel to the asymptotic, and the points of minima are almost in the same place. The

asymptotic results are conservative, they always overestimated the final time, and gave more

restrictive conditions on P and T for uniformity. i.e. P and T obtained by the asymptotic

analysis never predict a successful process if it does not exists. However, since P and T

obtained by the asymptotic analysis may be much different from the optimal ones ( obtained

by the numerical analysis ), tf may be much larger then the minimal value ( See Table II ).
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IV Homogeneous Nucleation.

CVI processes can be limited by homogeneous nucleation (i.e., powder formation) in the

gas phase. This effect has not been treated in previous CVI models because it generally occurs

outside of the solid preform. However, powder formation can impose serious limitations on

CVI operating conditions during the formation of carbon and oxide matrices. Thus, this

phenomena imposes a constraint on the allowable CVI operating conditions. In practice,

the nucleation rate depends on the reactor configuration, as well as its actual value. For

the current analysis, we assume that powder formation limits CVI when the nucleation

rate exceeds some allowable level, Ilim. With this in mind, the following constraint can be

presented. ( For the derivation on this constraint see [4] ).

Alim = (X0P )2/T 2.5 exp(−AI/T
m) (53)

where Alim is the maximal nucleation rate specification and the two constants, AI and m

are determined empirically to fit the nucleation model. A good fit to the experimental

data of Loll et. al. ,see [13], [14], was obtained with m = 1.5, AI = 750, 000 Km, and

Alim = 3.3 10−17 atm2/K2.5. The value of Alim, however, is somewhat arbitrary, since it

reflects a threshold for a given reactor. By varying Alim, it is possible to assess different

tolerance levels for powder formation. For example, recent carbon CVI experiments at Oak

Ridge National Laboratory tolerate higher powder formation levels than those described by

Loll et.al. with a threshold value that corresponds to Alim = 2.0 10−21 etm2/K2.5. [15].

The effect of adding the powder formation constraint can be seen from Figure 3, where

the I-curves are defined by Eq. (53). As seen from the left plot, the new constraint limits

the pressures and temperatures to values which are below both the I and the J-curves. For

a given pressure, the minimal tf corresponds to a temperature on either the I or J-curve

( whichever is lower ). Thus if the minimal tf found in section 3 ( i.e. when P and T are

on the J-curves ) to the left of the I-curve, then the additional constraint does not change

the previous results. If, on the other hand, this point is on the right of the I-curve then, the

minimal tf occurs at the intersection between the I and J-curves. This point can be clearly

seen as a cusp in the tf vs. P in the right plot.

A complete assessment of X0 effects requires solutions with the full Dusty Gas model,

because large values of X0 violate the assumption of a dilute reactant gas. However, con-
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a) b)

Figure 3: Effect of homogeneous nucleation for k1 = 0.7, X0 = 0.01, AD = 1.54 ∗ 10−5;.
(a) The numerically obtained J Curve (uniformity constraint, Eq. (42)) and the I Curve
(nucleation limit, Eq. (53) with Alim = 2.0 1021). (b) Limiting time as a function of pressure.
The left part of the curve is determined by the numerically obtained J Curve and the right
side is determined by the I Curve, with the minimal time shown by the filled circle. The
dotted line corresponds to the approximate J Curve which was determined with asymptotics.

sidering only values up to X0 = 0.1 provides useful insight into optimizing dilute systems.

Without the homogeneous nucleation constraint (i.e., as Alim → ∞), the minimal time is

inversely proportional to X0, and the optimal pressure and temperature do not vary with

X0 (see section 3). However, homogeneous nucleation limits the operating conditions when

Alim is low enough, as illustrated in Fig 3. The effect of this limitation on the optimal

conditions and on the minimal time are shown in Fig. 4 . These results lead to the following

conclusions:

1. As in section 3, the asymptotic results are in good agreement with the numerical results

for k1 = .15, where α2 ∼ .01, and much less accuracy in the case k1 = .7 where α2 ∼ .1.

In both cases, however, the asymptotic results agree qualitatively with the numerical

results.

2. Notwithstanding the dilute reactant gas restriction, tf are monotonically decreasing

functions of X0, thus it is advisable to work in the ’highest’ X0 possible. However

since the optimal P is also a monotonically decreasing functions of X0, this value of

X0 is limited by the lowest operational pressure. For example for working pressure

of about 0.01atm, the maximum allowable X0 is only 0.05 , for 200µm diameter fibers
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a) b)

c)

Figure 4: Effect of X0 with AD = 7.7∗10−7: (a) optimal pressures; (b) optimal temperatures;
(c) minimum infiltration times.

(AD = 7.7 10−7).

3. For a given X0, as the fiber diameter increases P and tf decrease and T increases.

But unlike section 3, the differences here are significant. This occurs because the

homogeneous nucleation condition forces us to work in a region where the dependence

on AD is much stronger.

4. The homogeneous nucleation constraint causes the optimal temperature and pressure

to vary with X0.

Note that the minimum infiltration time is dramatically increased when there is a sig-

nificant limitation imposed by homogeneous nucleation. In general, the process must be

operated at lower pressures to avoid powder formation. Some increase in the corresponding
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optimal temperature accompanies this decrease in pressure.

V Conclusions

Minimizing infiltration times for isothermal, isobaric CVI is important because process-

ing times are typically very long. The work presented here provides a detailed assessment

of the pressure and temperature which will minimize the total required time, based on a

simplified model for a single, dilute reactant species. This formulation makes it possible

to understand the basic physics of the problem in terms of a relatively small number of

lumped parameters. The basic objective of this optimization problem is to obtain a density

profile with a prescribed amount of uniformity, in the shortest possible time (section 3).

The asymptotic results are particularly useful, because they make it possible to determine

optimal conditions without doing numerical calculations (under conditions where α2 is small

enough). Based on comparisons with the numerical results, the asymptotic forms are also

qualitatively accurate when α2 is larger. Thus, the asymptotic results provide a clear under-

standing of how the optimal conditions are related to the key parameters for the problem.

The effects of homogeneous nucleation were also analyzed, as an additional constraint on

the basic optimization problem. This issue has not been considered in previous work on

CVI modeling, however, it can limit operating conditions in systems were powder formation

is significant (e.g., the formation of carbon matrix composites). The results obtained here

provide a quantitative assessment of the conditions where homogeneous nucleation imposes

limitations on infiltration conditions. When these limitations occur, powder formation also

increases the minimum infiltration time.
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