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Abstract

In the neighborhood of a boundary point, the solution of & érder symmetric ho-
mogenous hyperbolic system is conveniently decomposedfimdamental waves solution,
which are readily classified as outgoing, incoming andatatiy or tangential.

Under broad hypothesis, we show that the spans of the setisgafing and incoming waves
have nontrivial intersection. Under these conditionsalpiinear, perfectly nonreflecting local
boundary conditions are shown to be impossible.

1 Introduction

Let us consider the symmetric hyperbolic system:

m
G + Z Ajll, =g(x,t), xeR™ t>0, 0G(xt)eR", m>2 (1.1)
=1
where
Aj € Mpxn symmetric j=1,....m (1.2)
andii(x,0) andg(x,t) are such that
supg i(x,0)) , supgg(x,t)) € Qo € R™, compact (1.3)

where supp stands for support.
In many applications, it is desirable to locally decompdse general solution of equation
(1.1), into 'waves’ that are moving in different direction&n example of such application is the
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specification of nonreflecting, or absorbing, boundary doos. Specifically, since in practice it
is impractical to numerically solve problem (1.1), (1.3yeothe wholeR™, this problem is often
approximated by:

m
ut+ZA,—uxj:g(x,t), xeQcR™ t>0, uxt)eR", m>2 (1.4)
=1

for some boundef® O Qg, with the initial and boundary conditions:
u(x,0) = U(x,0) (1.5)

and
B<X)< U(th)‘xedfz) =0 (1.6)

with someB : dQ — Mpxn(R). The objective is to choos® independent of the solutidi(-,t),
g, such that the solution obtained from (1.4), (1.5), (1.6) is unique and coincideghwor ap-
proximates closely) the restriction @ of the solutionli as obtained from (1.1), (1.3). For more
information about absorbing boundary conditions see, fitl][2].

An application of the main result of this paper is to the plolesiorm of such a boundary
operator B. It is widely expected, at least for some specKangles of (1.1), that no such local
operatorB exists. Below we shall show that this is indeed the case geiterally.

In order to understand the way the operd&arould be constructed, we consider the properties
of the solution to (1.1) near the boundat@. Since near the boundagyx,t) = 0, we examine in
this paper the homogenous system,

m
ut—i-ZA,-uxj:O, XeQcR™ t>0, uXxt)eR", m>2 (1.7)
=1

with the boundary condition (1.6), near a paxgte Q.
Equation (1.7) admits planar 'wave’ solutions of the form:

ux,t) =rf(e-x—At), eeR"/{0}, reR"/{0}, f:R—R (1.8)

satisfying

(eA)r=Ar, A=(A....,An)" (1.9)

Here and below, is the realR™ inner product.



The solutions (1.8) are waves that are moving in the diractibthe vectore if A > 0, or
opposite teeif A < 0 and are stationary & = 0. Throughout this paper we consider the solution
near a pointxg € dQ, with an outward normab. We will call the wave (1.8) outgoing ife-
v)A > 0, incoming if(e- v)A < 0 and stationary or tangential (- v)A = 0. For the case =
% =(1,0,...,0)7, we identify outgoing and incoming waves as right-movingl deft-moving,
respectively, in subsequent examples, depending on whgth&)A is respectively positive or
negative.

Throughout the paper, we discuss polynomial wave solutibhsse solutions are unbounded,
however they should be regarded as the first terms ithotted Taylor expansion of the solutions
nearxo, rather than global solutions.

In the context of absorbing boundary conditions, proposaehdary conditions are often ap-
praised by their treatment of specific local solutions comding to incoming and outgoing
waves. A simple example shows that the classification of @getgaves as incoming or outgo-
ing is ambiguous.

Example 1.1: Let us consider the following equatifin

0O 0 O 0O 0 -1
u+{ 0 0 -1 |ux+ 0O 0 O uy =0 (1.10)
0 -1 O -1 0 O

in the domainQ = {(x,y) |x < 0}. The pointxg ,will be taken asxq = (Xo,Y0) = (0,0), and the
outward unit normal is = (1,0).
Remark: In this paper, for the theoretical parts, we xse .., Xy as the space variables. In
this, and the rest of the examples in this manuscript wexuse instead ofx;, xo, X3, respectively.
Every functionu of the form
—sin(0)

u=| —cog8) | f(cogO)x+sin(B)y—t), (1.11)
1

is a wave solution of (1.10). In particular, by takifigé) =&, 6, =0, 623 = +11/6, O45 = +11/3
and the corresponding vectas= (cos(ej),sin(ej))T, then the functions,

1This is a 'generic’ equation. This is the electromagneticeffEation for;, = Ey, Uy = —Ey anduz = H, the TM
equation foru; = —Hy, u» = Hy andus = E; and the acoustics equation if we take= v,u = uanduz = —p.



—-1/2 V3/2
( \/3/2) (Bx+3y—t);  ugs = ( —1/2) (3x— By -1); (1.12)

1/2
U ( \/§/2) (Bx—ty—t),

are wave solutions moving in the directiefl). In particular,uys) ... uys are all right-moving
waves. However,

0
3V3 9-33 9-3.3
1) (x+t) = _7*[”8(1)+7\fue<2)+ V3
1 —1247/3 —12+7V3 C12+73
3HVE VB (1.13)
—12+7/3 —12+7/3

is a left-moving wave solution of (1.10), of the form (1.11if6 = —r1/2.

This example illustrates the fact that, in general, sohgioannot be classified into disjoint
subspaces of right- or left-moving waves.

Remark: It can be verified, that if, instead of usifgé) = & in (1.11) and (1.12) one would
have used any other smooth function, then, the linear temrtei Taylor expansion GLf?:l ajUg )
(where thea; are the ones used in (1.13)) would be the same as the lingaritethe Taylor

expansion of the incoming wave
0
( 1 ) f(x+t). (1.14)
1

A more elaborate, physical example for this phenomenoresgnted in Appendix A.

It should be noted that this is a multidimensional phenomemio one space dimensiom =
1, the system, (1.7), can be diagonalized, and separates isystem of uncoupled advection
equations.

In section 2, the phenomenon of coupling between incomimlgoangoing waves is presented
in detail.



In sections 3 and 4, we show that this phenomenon is quiterglee particular, at a nonchar-
acteristic boundary point which is neither "purely incogiimor "purely outgoing”, the spaces of
incoming and outgoing waves necessarily have nontriviergection and perfectly nonreflecting
boundary condition of the form (1.6) are impossible.

2 Local Wave Expansion

2.1 Formulation

Formulation of boundary conditions for (1.7) dependingmeoiming and outgoing waves is based
on a local wave expansion of solutions.
Let u(x,t) be a solution of (1.7) of clags! nearxo € dQ andty, thus
m

u(x,t) = U(Xo, to) + (t —to)ut(Xo,to) + > (Xj —Xoj) Ux; (Xo,to) +0(|X —Xo| + [t —to])  (2.1)

j=1
The linear part of (2.1) is isomorphic ®™";

Uy, (Xo,to)
> = : cRMN. (2.2)

Since the time derivative is then obtained from (1.7),

Ut (X07 tO) = -
i

Aj Uy (Xo,to) = —(A1|A2|...‘%) d. (2.3)

M3

We can now choosenn vectorsel!) = (egg),...,e%))T € RM/{0}, not necessary different, and

indicesk, and corresponding eigenvectogs, satisfying:

€A (€)) = A (€?);  kee{l,...,n}, £=1.. mn. (2.4)

Note that for every vectoel”) there is a choice of eigenvectorsy, and their corresponding
eigenvaluedy,. In order to simplify the notation we abbreviate= ry, andA, = Ay, with the un-
derstanding that &) = el?’) for ¢ + ¢/, then they correspond to different eigenvalues/eigenvect
Thus (2.4) becomes

D Ayrp=Arg; kee{l...,n}, ¢=1...mn, (2.5)



and theelY) are chosen such that tk® given by

egg) ry
D) = : cR™" (2.6)

er(ﬁ) e

are linearly independent. This is not difficult; for exampletakingel’) = Xj,ke=C—jn, £ =
1,...,mn with j = j(¢), determined fron{j — 1)n < ¢ < jn, as will be illustrated in example 2.1.
Now we can find the constanés € R, /=1,...,mn, such that:

mn

/Z ad, =. (2.7)
=1

Using the previous definitions we can rewrite-to)ut (Xo, to) andy "(xj — Xoj) U (Xo, to) as fol-
lows:
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)) (2.9)

u(x,t) = u(Xo,to) + (t —to)ut(Xo,to) + Z —X0j) Ux; (X0, t0) +O(|X — Xo| + [t —to|) =

ﬂ\
>
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Therefore (2.1) can be written as:

3

mn

U(Xo,to) +[Z apry [e(f) (X=X0) = A (t—to)] +0(]X—Xo| +[t—to])  (2.10)
=1

We can now define a basis of wave solutiofis, }, independent ofi, but determined by the
specific choice ofel")},

Ugn = ¢ [6- (x=x0) = M (t—1t0)] . (2.11)
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Note that eachu, is a solution of (1.7) and is a wave moving in the directieil)), or opposite
to (el¥)). Then (2.1) becomes:

mn

u(x,t) = u(xop,to) +/Z Ay Uy +0(|X —Xo| + [t —to]) , (2.12)
=1

i.e. the first order term in the Taylor expansiorugk,t), can be presented as a linear combination
of the linear wavesl .
Also, higher order terms in can be similarly expanded, obtaining an expression

P P«
u(x,t) =u(xo,to)) + 3 Y iy Uge)  +O(IX—Xo| P+ [t —1o|P) , (2.13)
K=1/x=1

for u locally sufficiently smooth, with

K

Ugit) ¢ = Tt [e(f) - (X—=Xo) — Ak, (t —to) (2.14)

andr, andAy, satisfying (1.9). We omit the proof of this in the interestoévity.
For v the outward unit normal afp, e € R™/0 andA determined from (1.9), we denote the set
of outgoing, incoming and stationary or tangential waveh@neighborhood ofg by

U, = {ue|(e-v)A >0} outgoing
Y- = {ue|(e-v)A <0} incoming (2.15)
U = {ue|(e-v)A =0} stationary or tangential

We also define the following subspaces of local solutiond af)(

U, = spafuee %}
U = spafuee %}
U = sparue€ %)

(2.16)
and their equivalents iR™",
U, = spaf{®;|uece %}
U = spaf{®;|ucec %}
U = spaf®,|uee %} . (2.17)



Similarly, for a given choice of the vectoes”) and indicesk,, the wavesu, can now be
characterized as follows:

W, = {Ue(/{) | (€D v)A, > 0} outgoing
W_ = {ue(@ | (€D v)A, < O} incoming (2.18)
Wo = {Ue(e) | (D) v)A, = O} stationary or tangential

We define the corresponding subspaces:

W, = spafugy €W, }
W. = sparfug, € W_}
Wo = sparugy €Wo}
(2.19)
and their equivalents iR™",
W, = spar{®; |ug) €W, }
W. = spanf{®;|ug, € W_}
Wo = sparf{®;|ugy €Wo} . (2.20)

Throughout we takennvectorsel) and indices, such that thes, are linearly independent.
Therefore the spac&¥,, W_ and\W\g are not intersecting. Though it is clear which of the) are
incoming or outgoing, in general, it iwt true, thatW, (or W, ) contains only outgoing waves!

In order to illustrate the phenomenon, let us look again.d0).in the domain = {(X,y) | X <
0}. The pointxg ,will be taken asxo = (Xo,¥o0) = (0,0), and the outward unit normal is= (1,0).

The vector®d is obtained from (2.2),

0/(9X Uy (Xo, o

(X0, o)
0/0 X W(Xo,to)
Ux(Xo,t
B (X0, %) | 9/9xus(x0,t0) 6

P = = €R®. (2.21)

u (XO tO) d/dy ul(XO7tO)

A /0y W(xo,to)

d/0dy uz(Xo,to)

There are several ways to choose the veats
Example 2.1:

e(l) — e(z) — e(3) — < (])' ) ; e(4) = e(5) = 6(6) = ( 2 ) (222)



The corresponding, andr, are:

0 1
)\1:—1, r = 1 ; )\4:—17 4= 0 ;
1 1
1 0
A=0, ro=1| 0 |; As=0, rs5=| 1 |; (2.23)
0 0
0 -1
Az=1 rz3=| -1 |; Ae=1  rg= 0
1 1

The®,’s are:

Dy =

P OPFP,OOO
OPr OO0O0OO0o
I—‘OI—‘OOO

S
[y
I
OO OFr ko
S
N
Il
cNeoNoNeNoN )
/ﬁ /ﬁ
OOOI—‘HO

1
-]

and theuyy’s are:

0 1 0
Up =11 | (X+1); ugza=| 0 | X ug=[ -1 | (x=t);
1 0 1
(2.25)
1 0 -1
Uy =| O ) (Yy+1); Ugs=| 1 |y Ugg=| 0 | (y-t).
1 0 1

Hereus in an incoming, or left-going waveys) in an outgoing, or right-going wave,, and
Ugs are stationary waves, angls) anduge are tangential waves. g € W_, Uy €W+ and
Ug2); Ug)s Ugs), Uge) € Wo.

In this case, the dimension¥f, is 1, and no input wave can be expand as a linear combination
of vectors from, andWg only.



In Example 1.1, howevet),...,Uys € W, . Their linear combination, (1.13), is iW_.

Thus in the neighborhood of a given poxgt to a solutionu can be approximated from a finite
dimensional set of polynomial waves,. This is in contrast to the situation for trigonometric
polynomial waves. It is well known that trigonometric potymial waves, travelling in different
directions are orthogonal to each other.

3 TheGeneral Theorem

In this section it will be proven that the solutions of all leypolic systems which couple the
outgoing and incoming waves and have no stationary or tdizjemaves (along the boundary
0Q) have the phenomena that the incoming and outgoing wavesoargeparate subspaces, i.e.
U.N%_ +0. It should be noted that this theorem holds at any prine dQ where these
hypotheses are satisfied. We start by proving the theorefméar waves. Then we briefly sketch
of the proof for the case wherfein (1.8) is a higher order polynomial.

3.1 Proof of the General Theorem, Linear Case

Let
m
Ut + ZiAiuxi:O’ XeQCcR™ t>0, uXxt)eR", m>2 (3.1)
i=

where
A € Mpxn symmetric i=1...,m (3.2)

and letQ ¢ R™ be a given domain, with smoothQ, xg € dQ andv is an outward unit normal at
Xo-
The system (3.1) has local linear plane wave solutions

Ug(jo (X, 1) = Ti(e) (- X — Ak(e)t) (3.3)
wheree € R™/0, ke {1,...,n}, r(e) € R"/0, andAg is defined by:
(e-A)ri(e) = Ak(e)ri(e) (3.4)

Within a neighborhood of a poing € dQ, we have the classification of the plane wavés,
U and%, as defined in (2.15) and the corresponding subspaces){(2.16).
Theorem 3.1: Assume

e Hypothesis 19Q is non-characteristic ab, and is smooth in the neighborhoodxef
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e Hypothesis 2: There exigt, € R"/{0}, n- <0< n4, uLv such that:

(V-A)py =N+py (3.5)
and
p_(H-A)p, =1 (3.6)
Then
U NU-#0 (or equvalentlyZZ, N%_ +0 ) (3.7)
Remarks:

(1) For a systenu; + Z Aiuy, +Ku =0, K € Mp«n(R), the same theorem holds, since the zero

order term can be ellmlnated by using the transformation:

Ugii (X, 1) = (-x = At)eri(e) .

(2) Hypothesis 1 is not satisfied for two-dimensional waveagipn, (1.10). This theorem does
apply, however, to equations like the Advected-Acoustqsdions:

a 0 0 B 0 -1
W+ 0 a -1 |u+[ 0 B 0 Ju=0; a®+B%<1;
0 -1 a 10 B

Hypothesis 1 is made in the interest of expediency, and canda&kened somewhat. As
could be seen from the examples given in the previous sextiba conclusion (3.7) applies
in some cases where the boundary is characteristic.

(3) Hypothesis 2, however, is essential. This assumptiengnts the case of purely incoming
or outgoing boundary, or a combination of two uncoupledeyst with boundaries, purely
incoming for one and outgoing for the other.

The proof of theorem 3.1, for linear waves contains two pantghe first, it is shown that the space
of all linear wave solutions to (3.1) is isomorphicR8'" and that this space can be spanned by all
the linear wave solutions moving in two different direcsoin the second part it is proven that the
incoming and outgoing waves are coupled.

Proof of theorem 3.1: It suffices to considem = 2, with
ef8)=v+0u, 6€cR; ef)-v=1 (3.8)

11



and letA(0) andry(60) be determined by (3.4):
(e(0)-A)r(8) =A(0)rk(8), k=1,....n (3.9)
From hypothesis 1, since there are no stationary wave® ehstsd > 0 such that
A(8)#£0,16)< 6, k=1,....n (3.10)

From now on, we shall assume théf < 6.
The claim (3.7), is equivalent to the existence/p€ R, 6;, kj € {1,...,n}, j=1,...,N, such
that

N’ N

z VJ'Ue(ej),k,- (X7t> == Z Vjue(ej),k,- (X7t> 7& 0 (311)
j=1 j=N"+1
Aj>0 Aj<0

whereAj = Ay (6)),rj =ry;(6)), L< N’ < Nand

Ue(gj)7kj(X,t) e W, j E{l...N/}, )\J >0
Uegy) .k (%:1) € Wo; je{N'+1...N}, A; <0 (3.12)
Equation (3.11) means that there is a nontrivial linear doatibn of incoming waves, which can

be expanded as a linear combination of outgoing waves, arewarsa. For the wave solutions
(3.3), (3.11) is equivalent to

N
> yirj=0 coefficients of - x (3.13)
j=1

N

> Biyrj=0 coefficients ofu - x (3.14)

=1

N

> Ajyrj=0 coefficients ot (3.15)

=1

In fact (3.15) follows from (3.13), (3.14): This can be segrshbstituting (3.8) into (3.9), then:
N N N N
DA =Y Vi((v+6ip)-Arj=v-A% yrj+u-A% 6yrj=0
=1 =1 =1 j=1
For any8, k denote by
a6,k = [K(8) ) ¢ gan (3.16)
’ Ori(6) '
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then (3.13), (3.14) is equivalent to

N
> via(6;,k) =0, (3.17)
=1

where hereafter in the proof, we shall use N=2n+1 . For

o £ (2 (3.18)
set "
oW, j=1,....n
0; = ’ Y 3.19
: {9@), j=n+1,....2n (3.19)
' i=1...
N 20
j—n, j=n+1...,2n

We abbreviate
qj(6W,0@) =q(6),kj), Aj=A(6), rj=r(6), j=1....2n  (3.21)

andM (81, 8?)) € Manyan(R) is the matrix, constructed from tiyg (8, 8(2)), assembled colum-
nwise.

From (3.14), (3.18), (3.19), (3.20)(8V), 6(?) is nonsingular, so for an§, k there exists a
uniquey(8,k; 8V, 8(2)) e R?" satisfying

M(8W, 8@ y(8,k; 6V 8@) =q(8,k) . (3.22)

A solution of (3.22) implies a solution of (3.17) with = 2n+ 1, yoni 1 = —1, Oopy1 = 0,
koni1 = k. Thus we have shown that every linear wave can be expandedhasacombination of
2n waves moving forward or backward in the directions, deteed by8d) and6@. Up to this
point, we have said nothing about the signs ofApe

It remains to showtha, 8§, k can be chosen so that (3.11) holds. Specifically, it remains
to show that the span of the outgoing (incoming) waves doesaordain just outgoing (incoming)
waves.

Denote by

T.(6W,6%) = spar{q;(6",6@)|2; >0}
(3.23)
T-(6,6%) = spar{q;(6",6?)[A; <0}

13



T, (T_) is the span of all the outgoing (incoming)(8%, 6(?)).

V. (6W,0%)) = span{y;(8,k 6',6?)q;(6™,617) | A¢(6) > 0}
(3.24)

Y_(6@,6@) = span{y;(8,k;6Y,6®)q;(6',62)) | A(8) < 0}
6.k
Wheresg Enmeans span over all values @fk. Y. (respectivelyy_) is thei szan of the; (9(1), 9(2))
appearing with nonzero coefficients in the solution of (3.2&h q(6,k) corresponding to an

outgoing (respectively incoming) wave.

Z. = span{q(6,k) | A(6) > 0}
6.k
(3.25)

Z_ = span{q(6,k) | A(6) < 0}
0.k

Z, (Z-) is the span of all the outgoing (incoming)o, k).

Note that for anyp¥ 6, {q;(6™,6)) | A; > 0} ({q;(6V),8@) | Aj < 0}) is an outgoing
(incoming) wave, therefore it is i, (Z_). ThusT.(6M,8@) C Z,. Furthermore, using (3.22),
and choosind = 6,k =k, it follows thatZ. C Y. (8, 8(), therefore

To(6W, 0@y cz. cy.(6W,0?). (3.26)

There are now two possibilities. In the first orie(6),02) ¢ T, (6D, 0(2), i.e. there is
at least oney(8,k) € Y, (6W,0), but,q(8,k) ¢ T.(6(W,6(2). This is case 1 below, which we
shall show, immediately implies the theorem. The other ibdgy is that

Ti(6(1)76(2)> =7, :Yi(6(1)76(2)> : (327)

this is case 2 below, which we shall show precluded by hy stz

14



e Case 1: Suppose that for son@? 6
Y, (6,69) 2 T, (6W,6?) (3.28)

(or similarly,Y_(6,0)  T_(8,9(2))).
Then sincer, (8, 02) c R? andT,(6W,0) T _(8W,0(2)) =R, it follows that

Y (6, 6@ nT_(6M 6@ £0. (3.29)

From (3.29), there i,k such thatAi(8) > 0 and such that for somge {1,...,2n},
vi(8,k;61,02)) £ 0 andAj < 0. Since the{q;(8V,63)) | A; < 0} are linearly inde-
pendent, the corresponding solution of (3.22), necegssatisfies (3.11), thus establishing
3.7).

e Case 2. Suppose (3.28) and the corresponding relation betweesand T_ both fail; then
from (3.26), we get (3.27). From (3.27), sinZe are independent o, 6, T, are
independent 081, 62

Claim: T. are independent @@, 6 only if

span{rg(0) | Ak(6) >0 orAk(8) < 0)} is independent of . (3.30)
k

The proof of the claim is temporarily deferred.

We establish (3.7) by showing that (3.27) is impossible W&i6) determined from (3.8), fix
ke {1,...,n} sothatA,(0) = ny andr(0) = p__ as obtained from (3.9) with this particular
k. Differentiate (3.9) with respect t# at 6 = 0, obtaining

dry(0) dA(0)
(V-A=ni) =g THAPL =357 P+ (3.31)

Usingp_Lp ., as they are eigenvectors of a symmetric matrix, the innadypt of (3.31)
with p_ gives

dri(0
(n-—n+)p_- 5((9 ) +p_-(H-A)p.=0 (3.32)
where- is the standar@®" inner product, so using (3.6)
drg(0) 1
T T (3.33)
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From (3.33), for@ # 0 sufficiently smallA,(6) > 0 and

p_-Tk(6) #0 (3.34)
contradicting (3.30).
Proof of claim:  Denote by (0) the eigenvectoréry(0),k=1,...,n| A«(6) > 0} assem-
bled columnwise.

From the hypothesis 2, for arg there is at least ong(8) with positiveA,(0) and at least
one with negativa(6). Furthermore, from assumption (1), there isrpd) with Ay (6) =
0. Since the eigenvaluedy(0), are continues functions &, the number of positive and
negativeAi(0) is independent of. Thus we hav¥ (6) € M¢(R) forsome/, 1</ <n-—1,

¢ independent 08.

Now from (3.23),T, independent 08!, 6(2 means that
q(6,k) e T, (81,060 (3.35)
forany 8, 6 @ k such that\,(8) > 0.
Using (3.16), we have from (3.35) and the definitioWdB) the existence df,G € M/,.(R)
(depending 0@V, 82 B) such that
V(OY)F+V(6@)G=V(6) (3.36)
and
6V (6M)F +62v(82)G = 6V (6) (3.37)
which has to hold for alp¥), 82 6.
ChoosingdV, 82 @ distinct, we solve (3.36),(3.37) simultaneously, obtagni

-6
V(OWF = o0 g V() (3.38)
and oo
V(6)G = oo gV (®) (3.39)
From (3.38),(3.39)
R\V(6)) CRV(6™)) or RV(69)) (3.40)

But as6, 6@, 6 can be interchanged, (3.40) implies
RV () =R(V(8'9)) =R(V(6)) (3.41)

which is equivalent to (3.30).
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Thus case 2, (3.27), is precluded. This proves the claim antpletes the proof of theorem

3.1.
U

If hypothesis 1 holds, then hypothesis 2 is necessary asasedlfficient for theorem 3.1 to

hold.
Theorem 3.2: Assume thatthé, i =1,...,m, in (3.1), are independent &ft. Assume

e The boundaryQ is piecewise smooth and noncharacteristic almost evemavhe
e Hypothesis 2 of theorem 3.1 fails almost everywhere.

Then the system (3.1) is equivalent to an assembly of uneduglbsystems, for each of which
the boundary is almost everywhere noncharacteristic angptiely incoming or else completely
outgoing.

Remarks:

(@) In the above, assumption (2) means that at every such ff@rboundary is completely
incoming or completely outgoing, so that (3.5) fails, oree{8.6) fails, i.e. there is no such
vectorpy.

(b) This theorem does not survive the addition of a lower otelen in u to the system (3.1).

(c) The extreme case of a system being equivalent to n saglatiens corresponds to the case
where the matrices;, i = 1,...,mall commute.

We omit the proof of this theorem in the interest of brevity.

Generalization to higher powers: The theorem above is proven for waves in the fargp =
rk(e)(e-x— Ag(e)t). It can be shown that is also true for higher order polynomviates, namely,
Uekk = rk(€)(e-x —Ax(e)t)X, k € N. The proof is similar to the linear case.

4 Absorbing Boundary conditions

In this section we discuss the question of nonreflecting Bagnconditions, as presented in sec-
tion 1. Under the same assumptions as for theorem 3.1, we #iaiwocal, linear, perfectly
nonreflecting boundary conditions do not exist.
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4.1 A theorem on boundary conditions.

Theorem 4.1: Under the same hypothesis as made in theorem 3.1, therebisumalary condition
(1.6), sufficient to uniquely determine weak solutions o#fl such that the restriction of the
solutiond, obtained from (1.1) t@& coincides with the corresponding solution of (1.4).

Remark: This theorem applies to linear, local boundary conditiofise questions of nonlin-
ear, nonlocal conditions and absorbing boundary layerd (jRivé still open. For more information
about the PML boundary conditions, see [3], [4], [1] and [2].

Proof: Throughout the proof, the poirg € dQ is considered fixed - nothing dependsx@nn
particular. Hypotheses 1 and 2 are assumed satisfied at
For anyx € dQ, denote by (x) the unit normal at this point.

Let
S(v(x)) = {(P.Q), P.Q& Mnyxnsymmetrig (4.1)
P+Q = v(x)-A (4.2)
P>0 , Q<O (4.3)
R(P) N R(Q)=0 (4.4)
See [5], [6].
As an example, let (x) -A = (2 (1)) , then for any > a > 0 we can take

P—l 1/a 1 Q_1 -1/a 1
"2\ 1 a) Y20 1 -la
We definePy andQg as the specifi® andQ which also satisfy:
PoQo=QoP=0 (4.5)
In this exampld? andQg correspond tar = 1.

In order to prove theorem 4.1 we need the following lemmas:
Lemma4.2: Givenw C R™, with smooth boundarg w and outward unit norma](x) ,x € dw,

P.Q € S{(x)) ,forallx € dw (4.6)

and
z(-,0) € Ly(w) (4.7)
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gel(wx(0,T)), O0<T <o (4.8)
bely(dwx(0,T)), (4.9)

there exists a unique solution of

m
Zt+Z|Aini=g, Xew, 0<t<T (4.10)
i=
Qz=Qb, x€dw, 0<t<T (weakly,in Ly(dwx(0,T)) (4.11)
zeLy(wx (0,T)), Pzelz(dwx(0,T)). (4.12)

Lemma 4.2 states that boundary conditions of the form (4slffjce for uniqueness, with
{P,Q} € S(v(x)) for almost allx € dw.

We observe thad does not have to be bounded.

We defer the proof to section 5.

Lemma4.3: Givenx,x' € 9Q,

{P.Q} € S(v(x)) . (4.13)
Then there exists
{P',Q} e S(v(X)) (4.14)
such that
IP—P|, |Q—-Q|| < clx—X]| (4.15)

The proof is deferred to section 6.

Proof of theorem 4.1: Sincel, satisfying (1.1), is unique, the boundary condition (1.6)
Bu . 0, must imply that satisfying (1.4) — (1.6) is uniquely determined. Set

p = rank Py = dimension of positive eigenspacew(fxp) - A . (4.16)

From hypothesis 1,
rankQp=n—p, (4.17)

SO uniqueness af can be attained only witB satisfying
rankB(Xo) > h—p (4.18)

or
dimkerB(xp) < p. (4.19)
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Denote by
X = {li(xo,t),0<t < T | suppi(-,0), ge Q} (4.20)

with G satisfying (1.1).
If Bu‘ag = 0andu =t on9dQ thenBi . 0, so to prove the theorem it will suffice to prove

dmX >p. (4.21)

The proof of (4.21) follows from three propositions.
Proposition 1:  For anyé € R, (P,Q) € S(v(xo)) there existsi € X satisfying

Bu—p¢. (4.22)

Proposition 2:  If (4.21)falils, i.e.dimX < p, then

X=R(Po(x0))  (Po,Qo) € Sv(xo)) (4.23)
satisfying(4.5).

Proposition 3:  Under assumptions of theorem 3.1, the condi{#:23)is impossible.

Proof of proposition 1:
We apply lemma 4.2, on the existence of weak solutions, with

w=0Q°=R"/Q. (4.24)

We choose
YeH (W)NC(®), Wxo)=1, (4.25)

with suppy NdQ in a small neighborhood ofy. By appeal to lemma 4.3, we can choose

(P(X),Q(x)) € S(v(x)), x€aQnN suppy (=dwnN suppy) (4.26)

so that
P(x) = P(x0) =P, Q(X)—Q(X)=Q as x—Xo. (4.27)

Sincedw = 9Q is smooth in a neighborhood &f, there exists a uniquec Ly(w x (0,T))
(T > 0 arbitrary) satisfying

Zt+.ziAizx‘:_.lex‘AiE’ XxXew, 0<t<T (4.28)
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z(-,00=0 (4.29)
P(x)z(x,t)=0, xe€dw, 0<t<T (4.30)

Since
QzelLy(dwx (0,T)), (4.31)

using (4.30) there is an extensionzoto Q such that
ze HY(Q % (0,T)). (4.32)
Then from (4.25), (4.28), (4.29), (4.30)
u(x,t) =z(x,t) + P(x)¢& (4.33)

satisfies .
Zt‘f’.zlAi(Z‘i‘ Pé)y, XEQ
1=

U+ S Al = £ (4.34)
t i; {O, X&ZQ

and we obtain (4.22) from
PU(Xo,t) = Pz(Xo,t) + P(x0)PE =PE, 0<t<T. (4.35)

The result (4.35) needs justification, asobtained from ((4.28)—(4.30)) and the existence
lemma 4.2 actually satisfies (4.30) in the senséPw) and not pointwise. Thus this applies
also tou obtained from (4.33) in (4.35).

Given suchy, let oz be a small open neighborhood xf € dw, shrinking to{xp} ase | O.
Denote by

a¢ = (surface area of g;)/? (4.36)

Then withP(x), Q(x) satisfying (4.26), (4.27 obtained from ((4.28)—(4.30)) andobtained
from (4.33), we have (4.35) in tHe (dw) sense, i.e.

iHP(U(X,t) —&lly(oex(0T))
<o (1P = POOIIX D)y 01+ POXIZX D ) #.37)
HI(W(X) = DPX)E [ILy0e x 0.7 + [(PX) = P)EllLy(0ex(0.T))) -
As ¢ | 0, using (4.25), (4.15)and (4.31), each term in the rightr&ide of (4.373- 0.
0
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Proof of proposition 2:  Without loss of generality, we take(xp) - A diagonal, and
Po= diag(A1,...,4p,0,...,0), Qo= (0,...,0,Ap41,...,An) (4.38)

ChoosingP = R in proposition 1 we have from (4.22)

p
PR" = ( R ) CPX. (4.39)
Onfp
where
0
Onfp - c Rnip
0

Thus if dimX < p, necessarily dinX = p and
X =spar{hy,...,hp} (4.40)

with
hjERn, hii=d&j, i,je{l,...,p} (4.41)

Denote byH € My, p the vectordy, ..., hp assembled columnwise.
As proposition 1 holds for angP, Q) € S(v(xo)), for anyP we have

dimPX = rankPH =rankP = p. (4.42)
The conclusion (4.23) follows from (4.40), provided we shbwat
hji=0, 1<j<p, p+1<i<n (4.43)
Suppose not, then fike {1,...,p},i € {p+1,...,n} such that
hji #0. (4.44)

We constructP, Q) € S(v(xo)) such that (4.42) fails.
Fork,¢,K, ¢ € {1,...,n} and fora > 0, denote byDy 4 € Mnxn(R) the diagonal matrix with
components

1, K =0 £k
(Dka ke = %(a + 1/0)2, kK =0 =k (4.45)
0, K £ ¢’

and fork # ¢, B # 0, B, 4 g the “elementary matrix” with components
(Exep)we = Op + B O - (4.46)
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Claim: Foranya >0and ank,/: 1<k<p</<n,

A2 fa—1/a ;A2 fa—1/a
B_))\_k) <a-|—1/a> - P= )\_g‘ (a-l—l/a) (4.47)
P = Ex/5DkaPoErkp (4.48)
Q=E;kpDraQoEisp (4.49)
satisfy(P,Q) € S(v(x)).

Proof: The pairs? andP, Qp and(j coincide except for the elemerkk, k¢, ¢k, /7.
From (4.38), ((4.45)—(4.49)) these are four componenterabled as 2 2 matrices, of the

form A
(A O /0 0
PO'(O o) QO'(O )\g)

5. 1 Ma+1/a)2 MY (a?—1/a?)
AN\ [AA MR (a? - L) Adl(a—2)2

az

(4.50)

< 1 —Aa-1/a)®  —|AA|Y3(a?-1/a?)
Pa\paree-g)  Aar/ar

Using (4.50), one easily verifies thiatQ satisfy ((4.2)—(4.4)). This verifies the claim above.
We setk = j, ¢ =i such that (4.44) holds and determirf&fom
B = —hkk/he=—1/he, (4.51)

using (4.40). Them > 0 is uniquely determined from (4.47) with this valueff
Now from (4.48), (4.38), (4.41), (4.46)

PoEx ¢ phk =0 (4.52)

implying
rankPH < p—1, (4.53)
contradicting (4.42). O

Proof of proposition 3:  We assume hereafter that the theorem fails, and thus byiaggyopo-
sition 2, dimX = p. TakeQ a small sphere withi, such thaky € dQ andxg € 9Q are the closest
boundary points, and such that

V(Xo) = V(Xo) (4.54)
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Figure 1:

As hypotheses 1 and 2 of theorem 3.1 apply als@ toising (4.54), so do propositions 1 and
2. In particular, using (4.54)

spaw(Xo,t), 0 <t <T} = R(Po(v(%0))) = R(Po(v(x0))) (4.55)

where thew(x,t) satisfy
m ~
Wi + Z\Aiwxi:O, XZQ, 0<t<T (4.56)
i=

and
w(x,0)=0, x¢Q. (4.57)

ChoosingXo — Xo| sufficiently small, clearly
dim spaqw(xp,t), O0<t<T} >dim spaqw(Xp,t), O0<t<T}, (4.58)
whence from proposition 2,
spaqw(Xo,t), 0<t<T}=R(P(Xop)) (4.59)

Now with |xg — Xo| > O fixed, there exist®’ such that

Qcq (4.60)
Xo € 0% (4.61)
V'(Xo) = V(Xo) + €l (4.62)

with |&] > 0 small andv’(xp) is the unit normal t@Q’ atxg .
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Figure 2:

From (4.60),(4.61),
{w(xg,t)} C X’ (4.63)

whereX’ obtained from (4.20) replacinQ by Q'. Assumptions (1), (2) and thus propositions 1

and 2 apply also t&’, so from (4.63)
X' =X (4.64)

and
R(P(X0)) = R(Po(Xo)) (4.65)

andPj(xo) iv determined using’(xo).
Now (4.65) is equivalent to (3.30), which has been shown sjide under hypothesis 2.
O

5 Proof of Lemma4.2

Remarks:
1. We allowA; to depend o, t with |A;|, |Ai x| uniformly bounded irw x (O, T).

2. Adding at termAgz to the left hand side of (4.10) witl#\o| (uniformly bounded irw x (0, T)
) changes nothing.

3. The issue of boundary conditions for hyperbolic systeas$ feceived thorough attention
in the literature. In some of the classical textbooks, seekample [7] and [8], the well-
posedness is proven by separating the problem into a pureh@aroblem and a semi-
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infinite problem for a strip along the boundary, using a piartiof unity and a proper change
of variable. Here, we use a different approach.

Proof: We take{Hn}{_; a (nested) sequence of subspaced tfw) N C(@) becoming dense
in HY(w) asN — o,
Approximationszy € C[0, T] — Hn:

zn(0) — z(+,0) in Lp(w) asN — o (5.1)
[|o-@u—0-2v 3 Aok |+ [ o (Qb+Pa) 0 52

forallpe Hy, 0<t <.
Choosep = zy in (5.2), integrate with respect to

0 = 2/|ZN (t)[*—|zn(0 //zNg—
;o/ta[ZN (ZAX,> zN+//zN (Qb+ (P— Q)ZN) 0<t<T (5.3)

0dw
SO

Iz [l 1P 220l 00wx 01y 1(=Q)Y 22Ny 0wx 0T)) < Cr (5.4)
uniformly with respect taN, using the definition ofP,Q), (4.2)-(4.4).
Extract a weakly convergent subsequence

N—oo

zn — z in Ly(wx(0,T)) (5.5)
PY2z "= P2 in Ly(dwx (0,T)) (5.6)
QY2 "=7 (—Q)Y% in Ly(dwx (0,T)). (5.7)

z, Z, Z satisfy bounds from (5.4).
Fory ¢ HY(w x (0,T) — R"), ¢(-,T) =0, from (5.2), (5.5) — (5.7), (5.1) and the density of
Hn asN — oo,

/wumz@m]/z<%fimwu> //gw+//w (Qb+P?) (58)
w 0 w 1= 0 dw

Choosingqj‘a = 0, it follows from (5.8) thatz satisfies (4.10) and the initial data (weakly) and
w

that(P+ Q)z)a is implicitly determined. Dropping the assumption tijatanishes o w, partial
w
integration of (5.8), using (4.2) and (4.10), gives
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T T

0=//—z-<P+Q>w+w<Qb+P2>=//w-<Qb—Qz>+/T/w-P<2—z> (5.9)

0dw 0w 0w

for arbitrary (smooth)p‘d .
w
From the condition (4.4) o, Q, it follows that the right-hand terms in (5.9) must vanish
separately. Thus (4.11) holds. In additioa: Z so there is no boundary layer.

6 Proof of Lemma4.3

Usingv(x) - A nonsingular, we have
rankP =k, rankQ=n-—k (6.1)

for somek. Using (4.4) andP, Q symmetric, an orthogonal basis makiadplock diagonal will also
makeQ block diagonal, of the form

PL : O 0O : O
P=|--- -« |, Q=] - - (6.2)
o {0 0 @ Q
with
with  Pr € Mixk, Q1 € M(n—k)x (n—k) (6.3)

nonsingular and symmetric.
We use the same block structure for the symmetric métrix’) — v(x)) - A,

(V(X/>—V(X)>A: , (64)

whereA € Myxk, 8o € My (n—k), A— € M(n_k)x (n—k), Dz Symmetric.
From (6.4)
A A A < elv(x') = v(x)] < ¢[X—x]. (6.5)

We seelP’, Q' of the form

P+ +E | 1o —E i 3
P o, o= e : (6.6)
S0 : F N QA —F
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From (6.2), (6.4) and (6.6), clearly (4.2) holds Q'
We findE € Myxk, F € M(n_x (n—k) bOth symmetric so that

rankP’ = k (6.7)

and
rankQ =n—k. (6.8)

Using (6.6) and (6.1), sinde, F,A, Ag are all small, (6.7) is equivalent to

1
F=Z00(PL+A, +E) o, (6.9)
and (6.8) is equivalent to
1
E=00(-Qi—-b + F)-1ag . (6.10)

( Here "equivalent to” means simply that the indicated isesrexist.)
From the ordinary implicit function theorem, far(x’) — v(x)| sufficiently small there exists a
uniquek, F satisfying (6.9), (6.10) simultaneously with

IEILIFI < clv(x) —v(x)| < c|x—x]. (6.11)

Equation (4.15) now follows from (6.5) and (6.11), usingjéand (6.2). Equation (4.4) f&¥',Q/
follows from (6.7), (6.8) using (6.6), (6.2).

To prove (4.3) folP’, @', we observe that from (6.3), (6.5), (6.11), foXx’) — v(x)| sufficiently
small, the symmetric matricé® +A, +E), (—Q1 —A_ +F) are strictly positive definite, while
from (6.9) and (6.10[, F are nonnegative definite. From (6.6), using (6.9), (6.1)afiya ¢ R,

b € R" X not both zero,

(a’,b")P <E) —a (P,+A, +E)a+a'Agb
1
- 21(Aob)T(Pl +A, +E) 1Agh

1 2
= ‘(P1+A+ +E)Y2a+ S(PL+D E)~Y2n0b

>0,
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and

(@' ,b"Q (g‘)

1
= —Z(ATa)T(—Ql — 0 +F) " 'afa+a’Agb

+b"(Qu+A-—F)b
‘ 2

:_L(_Ql —M+F) Y2 ra(-Qu A +F)Y2%p

2
<0
O
thus proving (4.3).
Appendix A
Let:
Ei: = OxH
Hi = —-0OxE (A1)

be Maxwell's equations. HerE = (Ep,Ez,E3)" andH = (Hy,Ha, H3)T, we takeQ = R3, and
Xo = (Xo,Y0,20) = (0,0,0).

As a model of an antenna, we shall use an elementary or Hgr#ediThe elementary dipole is
built from two time dependent chargegt) and—q(t). The first one is located &0,0,dl/2) and
the second one &0,0, —dl/2) in some cartesian coordinate systefy’,Z). The electromagnetic
field, generated by this dipole is:

_r/ _r/
E — f(P(t ), P 3r)) 2cos + (A.2)
~ (Pt—r") Pt—r) Pt—r)\ .
6< o + 72 + 73 sin@
S(+ _ p! S(+ ¢!
H = &(P(t,r>+P(t 2”) sing’ (A.3)
r r’

where

X = r’'sin@ cosy
y = r’'sin@ sing/
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Z = r'cosf

r’, and@’ are the spherical coordinate system, corresponding tcaittesian coordinate system
(X,¥,Z), andP(t) = q(t)dl is the dipole moment.

N Lo
y o/
3. *
. '
1 \
¢ .G
e. Fany
' Xo \,'/ 5(\
2@ ,
4.\ //
o L7
6 \\\ ///

Figure 3: Atop view on th& y plane. The 'antennas’, in black dots, are placed on a ccelgtered
atxg, (marked by a black square), with radiug The ghost antenna’ is placed(ap, 0,0), empty
circle.

An array of 'antennas’ are placed at the poxgs= (—cos6;,sin 8;,0)Lo, whereby =0, 8, =
nm/12 6, =—m/12, 63 =T1/6, 64, = —T11/6, 65 = 11/4, 65 = —11/4. and a 'ghost antenna’ is placed
at(Lo,0,0) The 'observer’ is placed &b, see Fig 1.

Each 'antenna’ generates an electromagnetic field (A.2yethe coordinate systeix,y', Z),
for each’antenna’ is parallel {a, y, z) and is centered a, . We denote these fields 0§ (6;),H(6;))

If we take the following linear combination:

i Liaj (R )] (n4)

where
(-1+v2) (-5+3v3)
25— 53v/2—15/3+31v/6

4-92-2/3+5V6
—25+53v/2+15/3-31v6
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14—33v/2—-8+/3+19/6

a p— p—
3= 25_53,/2— 15\/3+31/6

as=a = 0
(A.5)
then the fieldu(xp,t) and its first derivatives are the same as the field generatdelsingle 'ghost

antenna’ placed dLg,0,0), ( equivalent of substituting; = in eq. (A.2) ).
Similarly, by taking

<1+ f2> (~5+3v/3)

% = T35 53,2_15v/3131/6
2 (—5—m+m+¢é)

a;] = a =
1= = 25_53y2—151/3+31/6
38—52/2—-22/3+30V6

a3 = a4 =

25—53v/2—-15v/3+31/6

as = ag = 76+54V2+44/3+31V6
(A.6)

then also all of the second derivatives will coincide.

Note that axo, the wave coming from each of the antenna placeagnis right moving, in
the sense defined in section 1, while the wave coming from ltlestgantenna is left moving. This
result holds forany smooth functiorP(t).

Indeed, this procedure can be continued, as discussedeaxtdred section 3. Using sufficiently
large array of 'antennas’ any number of derivatives can béenta coincide.
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