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Abstract

An algorithm is presented which solves the multi-dimensional advection±di�usion equation on
complex shapes to second-order accuracy and is asymptotically stable in time. This bounded-error result
is achieved by constructing, on a rectangular grid, a di�erentiation matrix whose symmetric part is
negative de®nite. The di�erentiation matrix accounts for the Dirichlet boundary condition by imposing
penalty-like terms. Numerical examples in two dimensions show that the method is e�ective even where
standard schemes, stable by traditional de®nitions, fail. It gives accurate, non oscillatory results even
when boundary layers are not resolved. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Currently there is a growing interest in long time integration for solving problems in areas

such as ¯uid-mechanics, aero-acoustics, electro-magnetics, material-science, and others. Clearly,

it will be very advantageous if one could formulate the spatial discretization in a way which

guarantees that, for the semi-discrete formulation, the solution-error norm is bounded by the

norm of the truncation error. Most, if not all, existing algorithms rely on stability for

convergence. However, even stable schemes, which at a given time converge with mesh

re®nement may have a temporally growing error [1]. This is particularly true for hyperbolic

operators.
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This paper considers second-order accurate approximations to model linear advection±
di�usion equations in one or more dimensions, on domains which may be irregular. By an
irregular domain, we mean a body whose boundary points do not necessarily coincide with
nodes of a rectangular mesh.
In Section 2 we treat a model ``shock-layer'' equation (linearized Burger's equation),

ut � aux � 1

R
uxx; tr0; 0 < x < 1; R� 1

We develop there the theory for the one dimensional semi-discrete system resulting from the
spatial di�erentiation used in the ®nite di�erence algorithm. Energy methods are used in
conjunction with ``SAT'' type terms [1, 2], in order to ®nd boundary treatment and ``arti®cial-
viscosity-like terms'', that preserve the accuracy of the scheme while constraining an energy
norm of the error to be temporally bounded for all t>0 by a ``constant'' proportional to the
norm of the truncation error.
In Section 3 it is shown how the methodology developed in Section 2 is used as a building

block for the multi-dimensional algorithm, even for irregular shapes.
Section 4 presents numerical results. Section 4.1 deals with the steady-state solution to the

``shock-layer'' equation for a large range of the ``Reynolds number'', R. Oscillations that
appear in the numerical solution when using a standard central ®nite-di�erencing, are
eliminated (or dramatically reduced) when the bounded-error algorithm is used.
Section 4.2 considers steady-state solution to a two-dimensional scalar model to the

boundary layer equations,

ut � aux � buy � 1

R
uyy; R� 1; b < 0

both for rectangular and trapezoidal domains. Again, the bounded-error algorithm out-
performs the standard scheme in ways described therein.
Section 4.3 presents a time dependent example, modeling a boundary-layer being excited

sinosoidially,

ut � aux � buy � 1

R
uyy � sb sin�k�xÿ at��

Here, aside from the usual performance criteria, such as error-norms and quality of the
velocity pro®les, we see that the error-bounded algorithm also has a signi®cantly smaller phase
error.
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2. The Scalar One-Dimensional Case

Consider the scalar advection-di�usion problem

@u

@t
� a

@u

@x
� 1

R

@2u

@x2
� f�x; t�; GLRxRGR; tr0; a > 01 �1a�

u�x; 0� �u0�x� �1b�
u�GL; t� �gL�t� �1c�
u�GR; t� �gR�t� �1d�

1 and f(x, t) $C2.
Let us discritize Eqs. (1a)±(1 d) spatially on the following uniform grid:
Note that the boundary points, x= GL and x= GR, do not necessarily coincide with x1 and

xN. Set xj+ 1ÿxj=h, 1R jR Nÿ1; x1ÿGL= gLh, 0R gL<1; GRÿxN= gRh, 0R gR R1.
The projection into the above grid of the exact solution u(x, t) to Eqs. (1a)±(1 d), is

uj(t)= u(xj, t), u(t). Let DÄ be a matrix representing aux+1/Ruxx, at internal points without
specifying yet how it is being constructed. Then we may write

d

dt
u�t� � � ~Du�t� � B� T� � f�t� �2�

where T is the truncation error due to the numerical di�erentiation, and f(t)= f(xj, t),
1R jR N. The boundary vector B has entries whose values depend on gL, gR, gL, gR in such a
way that DÄu+ B represents aux+1/Ruxx everywhere to the desired accuracy. The standard
way of ®nding a numerical approximate solution to Eq. (1) is to omit T from Eq. (2) and solve

d

dt
v�t� � ~Dv�t� � B� f�t� �3�

where v(t) is the numerical approximation to the projection u(t). Subtracting Eq. (3) from
Eq. (2) one gets an equation for the solution error, ~E(t)= u(t)ÿ v(t),

d

dt
~E � ~D~E� T �4�

Our requirement for temporal stability is that k~Ek, the L2 norm of ~E, be bounded by a
``constant'' proportional to hm (m being the spatial order of accuracy). Note that this
de®nition is more severe than either the G.K.S. stability criterion [3], or the de®nition in [1].
It can be shown that if DÄ is constructed in a standard manner, i.e. away from the

boundaries the numerical second derivative is symmetric and the numerical ®rst derivative is
antisymmetric (and near the boundaries one uses ``non-symmetric'' di�erentiation), then there

1 The results for the case a<0 are found by an analysis anologus to the one presented in this section, and are pre-
sented in Appendix I.
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are ranges of gR and gL for which DÄ is not negative de®nite. Since in the multi-dimensional
case one may encounter all values of 0R gL, gRR1, this is unacceptable.
The rest of this section is devoted to the construction of a scheme of second-order spatial

accuracy, which is temporally stable for any gL, gR. The basic idea is to follow the procedure
used in [2]. The present case is more complicated due to the di�culty in treating the advection
term.
Note ®rst that the solution projection uj(t) satis®es, besides Eq. (2), the following di�erential

equation:

du

dt
� Du� Te � f�t� �5�

where now D is indeed a di�erentiation matrix, that does not use the boundary values and
therefore Te$T, but it too is a truncation error due to di�erentiation.
Next let the semi-discrete problem for v(t) be, instead of Eq. (3),

dv

dt
� �Dvÿ tL�ALvÿ gL� ÿ tR�ARvÿ gR�� � f�t� �6�

where gL=(1, . . . ,1)TgL(t); gR=(1, . . . ,1)TgR(t), are vectors created from the left and right
boundary values as shown. The matrices AL and AR are de®ned by the relations:

ALu � gL ÿ TL; ARu � gR ÿ TR �7�
i.e. each row in AL (AR) is composed of the coe�cients extrapolating u to its boundary value
gL(gR), at GL (GR) to within the desired order of accuracy (the error is then TL(TR)). The
diagonal matrices tL and tR are given by

tL � diag�tL1
; tL2

; . . . ; tLN
�; tR � diag�tR1

; tR2
; . . . ; tRN

� �8�
Subtracting Eq. (6) from Eq. (5) we get

d~E
dt
� �D~Eÿ tLAL~Eÿ tRAR~E� T1� �9�

where

T1 � Te � tLTL � tRTR

Taking the scalar product of ~E with Eq. (9) one gets:

1

2

d

dt
jj~Ejj2 � �~E; �Dÿ tLAL ÿ tRAR�~E� � �~E;T1�

� �~E;M~E� � �~E;T1�
�10�

We notice that (~E, M~E) is (~E, (M+ MT)~E)/2, where

M � Dÿ tLAL ÿ tRAR �11�
If (M+ MT) can be made negative de®nite then

�~E; �M�MT�~E�=2Rÿ c0jj~Ejj2 �c0 > 0� �12�
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Eq. (10) then becomes

1

2

d

dt
jj~Ejj2Rÿ c0jj~Ejj2 � �~E;T1�

and using Schwartz's inequality we get after dividing by k~Ek

d

dt
jj~EjjRÿ c0jj~Ejj � jjT1jj

and therefore (using the fact that v (0)= u(0))

jj~EjjR jjT1jjM
c0
�1ÿ ec0t� �13�

where the ``constant`` kT1kM=max0Rt R tkT1(t)k.
If we indeed succeed in constructing M such that M+ MT is negative de®nite, with c0>0

independent of the size of the matrix M as it increases, then it follows from Eq. (13) that the
norm of the error will be bounded for all t by a constant which is O(hm) where m is the spatial
accuracy of the ®nite di�erence scheme (6). The numerical solution is then temporally stable.
It can be shown that as 1/R4 0, so does c0. When c0=0, the di�erential inequality is

d

dt
jj~EjjRjjT1jj �14�

leading to

jj~EjjRjjT1jjMt �15�

i.e. a linear growth in time, a result typical of hyperbolic systems. This result can also be
obtained formally from Eq. (13) by letting c040 for any ®xed t.
The rest of this section is devoted to the task of constructing M in the case of m=2, i.e. a

second-order accurate ®nite di�erence algorithm. We shall deal separately with the hyperbolic
and parabolic parts of the R.H.S. of Eq. (11).
Let

M � 1

R
MP � aMH � 1

R
�DP ÿ tLP

ALP
ÿ tRP

ARP
� � a�DH ÿ tLH

ALH
ÿ tRH

ARH
�: �16�
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The parabolic terms are given by:

DP � 1

h2

1 ÿ2 1 0
1 ÿ2 1 0
0 1 ÿ2 1
0 0 1 ÿ2 1

. .
. . .

. . .
.

1 ÿ2 1 0 0
1 ÿ2 1 0

1 ÿ2 1
1 ÿ2 1

266666666666664

377777777777775
�17�

tLP
� 1

h2
diag�t�P�L1

; 0; . . . 0� � 1

h2
diag

4

�2� gL��1� gL�
; 0; . . . ; 0

� �
�18�

tRP
� 1

h2
diag�0; 0; . . . ; t�P�RN

� � 1

h2
diag 0; 0; . . . ;

4

�2� gR��1� gR�
� �

�19�

ALP
�

1
2
�2� gL��1� gL� ÿgL�2� gL� 1

2
�gL � g2L� 0 � � � 0

..

. ..
. ..

. ..
. ..

.

1
2
�2� gL��1� gL� ÿgL�2� gL� 1

2
�gL � g2L� 0 � � � 0

26664
37775 �20�

ARP
�

0 � � � 0 1
2
�gR � g2R� ÿgR�2� gR� 1

2
�2� gR��1� gR�

..

. ..
. ..

. ..
. ..

.

0 � � � 0 1
2
�gR � g2R� ÿgR�2� gR� 1

2
�2� gR��1� gR�

26664
37775 �21�
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The hyperbolic terms are given by:

DH � 1

2h

ÿ2 2

ÿ1 0 1

ÿ1 0 1

. .
. . .

. . .
.

ÿ1 0 1 0

ÿ1 0 1

ÿ2 2

26666666666664

37777777777775
�

c1

c2

c3

. .
.

cNÿ2
cNÿ1

cN

26666666666664

37777777777775

8>>>>>>>>>>>><>>>>>>>>>>>>:

�

ÿ1 2 ÿ1
0 ÿ1 2 ÿ1
1 ÿ2 0 2 ÿ1

. .
. . .

. . .
. . .

. . .
.

1 ÿ2 0 2 ÿ1
1 ÿ2 1 0

1 ÿ2 1

26666666666664

37777777777775
� 2h ~c

0 ÿ1 1

1 ÿ1 ÿ1 1

1 ÿ1 0 ÿ1 1

. .
. . .

. . .
. . .

. . .
.

1 ÿ1 0 ÿ1 1

1 ÿ1 ÿ1 1

1 ÿ1 0

26666666666664

37777777777775

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�22�

where

ck � 1

Nÿ 1
��cN ÿ c1�k� �Nc1 ÿ cN�� �23�

and

~c � 1

2
�c1 ÿ cN� �24�

For a>0 in Eq. (1)a), the left boundary is, for the hyperbolic part, an ``out¯ow'' boundary on
which we do not prescribe a ``hyperbolic boundary condition'', therefore, in this case tLH

=0.
When a<0, then tRH

=0Ðsee Appendix I for details.
Here, with a>0,

tRH
� 1

2h
diag�0; 0; . . . ; t�H�RNÿ1; t

�H�
RN
� �25�
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and

ARH
�

0

. .
.

0
0

0 ÿgR 1� gR
ÿgR 1� gR

2666664

3777775 �26�

Next we shall show that the parabolic part of M is negative de®nite. The symmetric part of
MP, MÄ P=1/2(MP+MT

P), is found using Eqs. (17)±(21), to be

~MP � 1

2h2

ÿ2 3gL ÿ 1
gL � 1

2ÿ gL
2� gL

3gL ÿ 1
gL � 1

ÿ4 2 0

2ÿ gL
2� gL

2 ÿ4 2

2 ÿ4 2

. .
. . .

. . .
.

2 ÿ4 2

0 2 ÿ4 2
2ÿ gR
2� gR

2 ÿ4 3gR ÿ 1
gR � 1

2ÿ gR
2� gR

3gR ÿ 1
gR � 1

ÿ2

2666666666666666666666666664

3777777777777777777777777775

�27�

We now decompose MÄ P as follows:
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~MP � 1

2h2
a

ÿ4 2

2 ÿ4 2

2 ÿ4 2

. .
. . .

. . .
.

2 ÿ4 2

2 ÿ4 2

2 ÿ4

26666666666664

37777777777775

8>>>>>>>>>>>><>>>>>>>>>>>>:

� �1ÿ a�

0 0 0

0 0 0

0 0 ÿ2 2

2 ÿ4 2

. .
. . .

. . .
.

2 ÿ4 2 0

0 2 ÿ2 0 0

0 0 0

0 0 0

2666666666666666664

3777777777777777775

�

ÿ2�1ÿ 2a� 3gL ÿ 1
gL � 1

ÿ 2a 2ÿ gL
2� gL

3gL ÿ 1
gL � 1

ÿ 2a ÿ4�1ÿ a� 2�1ÿ a�
1ÿ gL
2� gL

2�1ÿ a� ÿ2�1ÿ a� 0

0

0

0 ÿ2�1ÿ a� 2�1ÿ a� 2ÿ gR
2� gR

2�1ÿ a� ÿ4�1ÿ a� 3gR ÿ 1
gR � 1

ÿ 2a

2ÿ gR
2� gR

3gR ÿ 1
gR � 1

ÿ 2a ÿ2�1ÿ 2a�

26666666666666666666666664

37777777777777777777777775

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;
�28�

We look for 1>a>0 such that the second and third matrices in Eq. (28) are non-positive
de®nite. The ®rst matrix in Eq. (28) is already negative de®nite by the argument leading to
Eq. (60), in [2]. By the same argument it immediately follows that its largest eigenvalue is
smaller than ÿap 2. For 0< a<1, the second matrix in Eq. (28) is non-positive de®nite, see
Eqs. (63) and (64) in [2]. The third matrix in Eq. (28) has two square 3�3 corners which are
negative for 0< a<0.275. This completes the proof that MÄ P is indeed negative de®nite.
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Next we would like to show that MÄ H=1/2(MH+MT
H) is non-positive de®nite. Using Eqs.

(22)±(26) we have

~MH � 1

4h

ÿ4ÿ 2c1 1� 2c1 0
1� 2c1 ÿ2c1 0

0
0 0 0

0

. .
.

0 2cN � 2gRt
�H�
Nÿ1 ÿ1 ÿ2cN ÿ �1� gR�t�H�Nÿ1 � gRt

�H�
N

ÿ1 ÿ2cN ÿ �1� gR�t�H�Nÿ1 � gRt
�H�
N 4� 2cN ÿ 2�1� gR�t�H�N

26666666666664

37777777777775
�29�

We now write MÄ H as the sum of three ``corner-matrices'',

~MH � 1

4h
�mH1
�mH2

�mH3
� �30�

where

mH1
�

ÿ4ÿ 2v1 1� 2c1

0

1� 2c1 ÿ2c1
0

0 . .
.

0

26666666664

37777777775

mH2
�

0

0 0

. .
.

2gRt
�H�
Nÿ1 ÿ1ÿ �1� gR�t�H�Nÿ1 � gRt

�H�
N

0

ÿ1ÿ �1� gR�t�H�Nÿ1 � gRt
�H�
N 4ÿ 2�1� gR�t�H�N

26666666664

37777777775

mH3
� cN

0

0

. .
.

2 ÿ2
ÿ2 2

266666664

377777775

�31�

Clearly mH3
is N.P.D. (non-positive de®nite) for 8cNR0. Also, mH1

is N.P.D. for c1r1/4. A
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simple computation shows that mH2
is N.P.D. if tNÿ1 and tN satisfy

t�H�N �
2� d
1� gR

�dr0� �32�

t�H�Nÿ1 � ÿ
1ÿ gR�1ÿ d�
�1� gR�2

�33�

Thus we have proved that MÄ H is indeed non-positive de®nite, and therefore MÄ =
1/RMÄ P+aMÄ H is negative de®nite for 81/R, a>0, with its eigenvalues bounded away below
zero by ÿap 2/R, 0< a<0.275.

Fig. 2. Two-dimensional grid.

Fig. 1. One-dimensional grid.
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3. The Scalar Two-Dimensional Case

We consider an inhomogeneous advection±di�usion equation, with constant coe�cients, in a
domain O. To begin with we shall assume that O is convex and has a boundary @O $C2. The
convexity restriction is for the sake of simplicity in presenting the basic idea; it will be removed
later. The problem statement is:

@u

@t
� a

@u

@x
� b

@u

@y
� v1

@2u

@x2
� v2

@2u

@y2
� f�x; y; t�; t > 0; v1; v2 > 0 �34a�

u�x; y; 0� �u0�x; y� �34b�
u�x; y; t�j@O � uB�t� �34C�

We shall refer to the grid representation in Fig. 2
We have MR rows and MC columns inside O. Each row and each column has a discretized

structure as in the one-dimensional case, see Fig. 1. Let the number of grid points in the kth
row be denoted by Rk and similarly let the number of points in the jth column be Cj. Let the
solution projection be designated by uj,k(t). By U(t) we mean, by analogy to the one-
dimensional case,

U�t� ��u1;1; u2;1; . . . ; uR1;1; u1;2; u2;2; . . . ; uR2;2; . . . ; u1;MR; u2;MR; . . . ; uRMR
;MR�

��u1; u2; . . . ; uMR
� �35�

Thus, we have arranged the solution projection in vectors according to rows, starting from the
bottom of O.
If we arrange this array by columns (instead of rows) we will have the following structure,

U�C��t� ��u1;1u1;2; . . . ; u1;C1; u2;1; u2;2 . . . ; u2;C2; . . . ;UMC;1; uMC;2; . . . ; uMC
;CMC

�

��u�C�1 ; u�C�2 ; . . . ; u�C�MC
�:

�36�

Clearly

U�C��t� � PU �37�

where P is an orthogonal permutation matrix, of order l� l, l being the number of grid points
within O.
The operator n1 @2/@x 2+a @/@x in Eq. (34), including the boundary terms, is represented on

the kth row by M (x)
k , whose structure is given by Eq. (16) and the de®nition following it Eqs.

(see (17)±(26)). Similarly let M ( y)
j represent n2 @2/@y 2+b @/@y on the jth column. With this

notation, by analogy to Eq. (6), the two dimensional semi-discrete problem becomes

dV

dt
� �M�x� � PTM�y�P�V�G�x� � PTG�y� � f�t� �38�

where V is the numerical approximation of U
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M�x� �

M
�x�
1

. .
.

M
�x�
k

. .
.

M
�x�
MR

2666666664

3777777775
;M�y� �

M�y�1

. .
.

M
�y�
j

. .
.

M
�y�
MC

2666666664

3777777775
�39�

and

G�x� � G
�x�
P � G

�x�
H

� ��t�P�L1
gL1
� t�P�R1

gR1
�; . . . ; �t�P�Lk

gLk
� t�P�Rk

gRk
�; . . . ; �t�P�LMR

gLMR
� t�P�RMR

gRMR
�� � ��t�H�L1

gL1

� t�H�R1
gR1
�; . . . ; �t�H�Lk

gLk
� t�H�Rk

gRk
�; . . . ; �t�H�LMR

gLMR
� t�H�RMR

gRMR
��

G�y� � G
�y�
P � G

�y�
H

� ��t�P�B1
gB1
� t�P�T1

gT1
�; . . . ; �t�P�Bj

gBj
� t�P�Tj

gTj
�; . . . ; �t�P�BMC

gBMC
� t�P�TMC

gTMC
��

� ��t�H�B1
gB1

t�H�T1
gT1
�; . . . ; �t�H�Bj

gBj
� t�H�Tj

gTj
�; . . . ; �t�H�BMC

gBMC
� t�H�TMC

gTMC
�� �40�

The subscripts Bj (``B`` for bottom) play the same role as Lk (``L`` for left). The same remark
applied to subscripts Tj (``T`` for top) and Rk (``R`` for right).
Note that tHLk

(tHRk
)=0 when a>0(a<0). Similarly tHBj

(tHTj
)=0 when b>0(b<0).

Designating the two dimensional array of errors, Eij, by E= Uÿ V, the equation for E
becomes

dE

dt
� �M�x� � PTM�y�P�E� T �41�

where T represents the sum of the various truncation errors.
The time rate of change of kEk2 is given by

1

2

d

dt
jjEjj2 � �E; �M�x� � PTM�y�P�E� � �E;T� �42�

By the same arguments that follow Eq. (3).15) in [2] it is clear that the norm of the error, kEk,
is bounded by a constant, where the ``constant'' kTkM=max0R tR tkT(t)k.
In [2], it was shown that if the domain O is not convex or simply connected, the above

results still hold. This is also true here.
Note that if 1/R= n=0 (or n1= n2=0 in the two-dimensional case) then the di�erentiation

operator, M, becomes non-positive de®nite. In that case, it follows immediately from Eq. (42)
that the bound on the error-norm is not a ``constant'' but grows linearly in time.
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4. Numerical Examples

4.1. One-dimensional case

Here we consider the problem

@u

@t
� ux � 1

R
uxx; tr0; 0RxR1 �43�

u�0; t� �1
u�1; t� �0
u�x; 0� �u0�x�

The steady state solution to (43) is:

Fig. 3. Standard scheme, RC=2.

Fig. 4. SAT, RC=2.
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u�x� � 1ÿ eÿR�1ÿx�

1ÿ eÿR
�44�

Note that R (=1/n) plays the role of Reynolds number in this model for a ``linear shock
layer''.
Eq. (43) was solved numerically by two methods. In one (referred to as ``standard'') we use

central di�erencing for the spatial di�erentiation, and fourth-order Runge±Kutta in time. In
this ``standard'' case, there is no need for special treatment at the boundaries.
The numerical approximation v, in this ``standard'' case, satis®es the following ®nite

di�erence equation:

1

2h
�vj�1 ÿ vjÿ1� ÿ 1

Rh2
�vj�1 ÿ 2vj � vjÿ1� � 0 �0RjRn� �45�

with v0=1 and vN=0. The solution to Eq. (45) is:

Fig. 5. Standard scheme, RC=10.

Fig. 6. SAT, RC=10.
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vj � kj ÿ k2Nÿj

1ÿ k2N
; k � 2� hR

2ÿ hR
�46�

Notice, that if the ``cell Reynolds number,`` RC= hR>2, then k<0 and the numerical
solution, vj, will be oscillatory. If RC<2 then we resolve the ``shock layer'' (or ``boundary
layer'') and the solution will be smooth.
Numerical steady-state solutions of Eq. (43) using the ``standard scheme'', and using the

``bounded-error'' algorithm, Eq. (6), described above are shown in Figs. 3±8 for Dx=1/100
and various values of R. Both schemes were advanced to steady state using fourth-order
Runge±Kutta. It is clear that when RC<2, both schemes give good results. For RC=10
(R=1000) both show oscillations, but the new algorithm approximates the exact solution
much better. When RC=103 (R=105), the ``standard'' numerical solution is useless while the
``bounded-error'' scheme gives excellent results; in fact far better than for RC=10.

Fig. 7. Standard scheme, RC=1000.

Fig. 8. SAT, RC=1000.
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4.2. A steady-state two-dimensional case

Here we shall consider a steady-state problem, which models, in a way, the two-dimensional
boundary layer equations. The formulation is as follows (the time derivative is left in the
equation, since the approach to steady state will be via temporal advance):

ut � aux � buy � 1

R
uyy; tr0; 0Rx < 1; 0RyR1 �47�

u�0; y; t� � 1ÿ ebRy

1ÿ ebR
� 1

10
bRebRy=2 sinpy �47a�

u�x; 0; t� �0 �47b�
u�x; 1; t� �1 �47c�

Fig. 9. Exact solution.

Fig. 10. Exact solution near the boundary.
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We also take a=1, and in order to have a growing ``boundary layer'' on y=0, we must set
b<0.
The analytic solution of this problem is:

u�x; y� � 1ÿ ebRy

1ÿ ebR
� 1

10
bRebRy=2 exp ÿ b2R2

4
ÿ p2

� �
x

Ra

� �
sinpy �48�

Fig. 9 is a three-dimensional rendition of u(x, y) for R=90,000. (This three-dimensional plot
looks the same to the eye for various ÿ1< b<ÿ4/ ����

R
p

=ÿ4/300.) Fig. 10 is a plot of the
``velocity pro®le'' inside the ``boundary-layer'' (0< y<0.04) at x=0.1, 0.25, 0.9 and b=ÿ4/����
R
p

. The ``bumps'' at x=0.1 and x=0.25 may be considered as ``emulating'' results of ¯uid
mechanics computation for an incompressible ¯ow near the entrance to a channel, see e.g. [4].

Fig. 11. Standard scheme, b=ÿ1.

Fig. 12. Standard scheme, b=ÿ4/300.
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The numerical solution of Eq. (47) using a standard central di�erencing scheme depends
strongly on the value of b (at a given R). Figs. 11 and 12 show the three-dimensional plot of
vj,k with b=ÿ1 and b=ÿ4/ ����

R
p

=ÿ4/300. Figs. 13 and 14 show the pro®les at x=0.1 and
x=0.9 for b=ÿ1 and ÿ4/300, respectively. It should be emphasized that the ``peak'' in Fig. 11
has nothing to do with the ``bumps'' in the exact solution (see Fig. 10). The ``peak'' occurs way
outside the boundary layer, and also the amplitude behavior with the x-coordinate is counter
to that of Fig. 10. The ``peak'' is due to a purely numerical oscillation.
The same series of plots, but as computed by the new algorithm, is shown in Figs. 15±18.
It should be noted (see Table 1) that the ``bounded-error'' algorithm converges to steady

state (residual L2 norm<10ÿ13) an order of magnitude faster than the standard scheme when
using the same Dt, while CPU-time/iteration is about the same. The standard scheme may be
run at bigger Dt ( by about a factor of 2) while the SAT algorithm was already at its maximum
CFL number. If we let each scheme run at its own maximum Dt then the run times are about
equal, but the di�erence in errors remains.

Fig. 13. Standard scheme, b=ÿ1.

Fig. 14. Standard scheme, b=ÿ4/300.
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We also ran the same equations for a non-strictly rectangular geometry, where the upper
boundary instead of being y=1 is y=1ÿ(tan y)x, where y is the angle which the upper
boundary makes with the x-axis, see Fig. 19.
For many ys the results of the performance of the two schemes are una�ected by the change.

However, there are some ys for which the standard scheme converges to steady state much
slower than before at its own maximum allowed Dt, while the performance of the bounded-
error algorithm remains the same as before. For example, see Table 2, for the case of y=3.98.
As in [2], the point is that for non-rectangular geometry the distance that a boundary is away
from a computational mode, gh, might become extremely small and this causes the
deterioration in the performance of the standard scheme. Here it is re¯ected in the fact that the
standard scheme cannot ``support'' the larger allowed Dt that can be achieved for the case

Fig. 15. SAT, b=ÿ1.

Fig. 16. SAT, b=ÿ4/300.
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Fig. 17. SAT, b=ÿ1.

Fig. 18. SAT, b=ÿ4/300.

Table 1
Rectangular geometry results

Time to L2 L1 norm L2 norm L1 norm Max error

steady-state residual of the error of the error of the error location

b=ÿ1
SAT 21.09 9.911�10ÿ14 8.805�10ÿ05 1.076�10ÿ04 3.108�10ÿ04 45, 46
Standard 417 9.987�10ÿ14 0.485139 0.674233 ÿ1.00423 10, 4

b=ÿ4/300
SAT 52.64 9.943�10ÿ14 1.665�10ÿ04 1.142�10ÿ03 0.01220 50, 2
Standard 416 9.967�10ÿ14 3.362�10ÿ03 2.447�10ÿ02 ÿ0.2864 50, 2
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y=0. For complex geometries it is very di�cult to predict a priori what range the values of g
will take. The SAT methods (the bounded error algorithm) are insensitive to the variations in g
caused by the geometry of the domain.

4.3. A two-dimensional time dependent example

To check on the temporal ``performance'' of the bounded-error scheme, we considered the
following problem:

ut � aux � buy � 1

R
uyy � sb sin�k�xÿ at��; tr0; 0Rx < 1; 0RyR1 �49a�

u�x; y; 0� � 1ÿ ebRy

1ÿ ebR
� bR

10
ebRy=2eÿ�b

2R2=4�p2�x=Ra sin py� ys sin kx �49b�

u�0; y; t� � 1ÿ ebRy

1ÿ ebr
� bR

10
ebRy=2 sinpyÿ ys sin kat �49c�

u�x; 0; t� �0 �49d�
u�x; 1; t� �1� s sin�k�xÿ at�� �49e�

The exact solution of Eq. (49) is:

u�x; y; t� � 1ÿ ebRy

1ÿ ebR
� bR

10
ebRy=2eÿ�b

2R2=4�p2�x=Ra sinpy� ys sin�k�xÿ at�� �50�

Again we take a=1, R=90,000, b=ÿ1,and ÿ4/ ����
R
p

. The parameters s and k have certain
constraints. If we want u>0, we must take s<1. The number of computational nodes, N,
puts a lower bound of 2pN on the wavelength, 1/k, i.e. 1< k<2pN. In the actual
computations we used s=1/2 and k=30. All the plots for this time dependent case are shown

Fig. 19. The trapezoid geometry.
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Table 2
Trapezoid geometry results

Time to L2 L1 norm L2 norm L1 norm Max error
steady-state residual of the error of the error of the error location

b=ÿ4/300
SAT 52.56 9.984�10ÿ14 1.707�10ÿ04 1.156�10ÿ03 0.01220 50, 2
Standard 401.11 9.995�10ÿ14 3.448�10ÿ03 2.479�10ÿ02 ÿ0.2864 50, 2

Fig. 20. Exact solution.

Fig. 21. Standard scheme, b=ÿ1.
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for t=10. Fig. 20 shows a three-dimensional plot of u(x, y,10). As in the steady-state case, the
plot looks the same to the eye for various ÿ1< b<ÿ4/ ����

R
p

=ÿ4/300. Figs. 21 and 22 show
the three-dimensional plots of vj,k for the standard and bounded-error schemes respectively.
Fig. 23 shows an x-pro®le of v at y=0.2, for both schemes and the exact pro®le, for b=ÿ1.
Fig. 24 gives the same pro®les at y=0.8. These plots bring out the di�erences in the phase
errors of the numerical algorithms. Figs. 25±28 repeat the same information as given in
Figs. 21±24, but for b=ÿ4 ����

R
p

=ÿ4/300. The e�cacy of the bounded-eror algorithm is quite
evidentÐeven when b=ÿ4/ ����

R
p

, where the norm-errors away from the bondary layer are not
dissimilar, and the phase error of the right running waves is quite a bit smaller in the case of
the proposed present scheme.

Fig. 22. SAT, b=ÿ1.

Fig. 23. b=ÿ1, y=0.2 pro®les.
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5. Conclusions

(i) A second-order method has been developed which renders spatial second derivative ®nite
di�erence operators negative de®nite. This is not surprising, since negative de®niteness was
achieved for fourth-order parabolic operators in [2].

(ii) A second order method has been developed which renders spatial ®rst derivative ®nite
di�erence operators non-positive de®nite. For the case when boundary points do not
coincide with grid nodes (g$1), this is a new result.

(iii) The results (i) and (ii) allow us to construct a solution operator for the advection di�usion
problem (and, of course, the di�usion equation) which is negative de®nite, thereby
ensuring asymptotic temporal stability.

Fig. 24. b=ÿ1, y=0.8 pro®les.

Fig. 25. Standard scheme, b=ÿ4/300.
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Fig. 26. SAT, b=ÿ4/300.

Fig. 27. b=ÿ4/300, y=0.2 pro®les.

Fig. 28. b=ÿ4/300, y=0.8 pro®les.
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(iv) The construction of these operators allows an immediate simple generalization to multi-
dimensional problems, on complex domains which are covered by rectangular meshes. The
proofs of the boundedness of the error-norms carry over rigorously to the (linear) multi-
dimensional cases.

(v) Numerous numerical examples demonstrate the e�cacy of this methodology.

Appendix A

As in the a>0 case the hyperbolic terms are given by:

DH � 1

2h

ÿ2 2

ÿ1 0 1

ÿ1 0 1

. .
. . .

. . .
.

ÿ1 0 1 0

ÿ1 0 1

ÿ2 2

26666666666664

37777777777775
�

c1

c2

c3

. .
.

cNÿ2
cNÿ1

cN

26666666666664

37777777777775

8>>>>>>>>>>>><>>>>>>>>>>>>:

�

ÿ1 2 ÿ1
0 ÿ1 2 ÿ1
1 ÿ2 0 2 ÿ1

. .
. . .

. . .
. . .

. . .
.

1 ÿ2 0 2 ÿ1
1 ÿ2 1 0

1 ÿ2 1

26666666666664

37777777777775
� 2h ~c

0 ÿ1 1

1 ÿ1 ÿ1 1

1 ÿ1 0 ÿ1 1

. .
. . .

. . .
. . .

. . .
.

1 ÿ1 0 ÿ1 1

1 ÿ1 ÿ1 1

1 ÿ1 0

26666666666664

37777777777775

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�A1�

where

ck � 1

Nÿ 1
��cN ÿ c1�k� �Nc1 ÿ cN�� �A2�

and

~c � 1

2
�c1 ÿ cN� �A3�
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For a<0 in Eq. (1)a), the right boundary is, for the hyperbolic part, an ``out¯ow''
boundary on which we do not prescribe a ``hyperbolic boundary condition'', therefore, in this
case tRH

=0, and

tLH
� 1

2h
diag�t�H�L1

; t�H�L2
; 0; . . . ; 0; 0� �A4�

ALH
�

1� gL ÿgL
1� gL ÿgL 0

0

. .
.

0 0

2666664

3777775 �A5�

Next we would like to show that MÄ H=1/2(MH+MT
H) is non-negative de®nite; then aMÄ H is

non-positive de®nite. Using Eqs. (A1)±(A5) we have

~MH � 1

4h

ÿ4ÿ 2c1 ÿ 2�1� gL�t�H�1 1� 2c1 ÿ�1� gL�t�H�2 � gLt
�H�
1 0

1� 2c1 ÿ �1� gL�t�H�2 � gLt
�H�
1 ÿ2c1 � 2gLt

�H�
2 0 0

0 0 0

. .
.

0 2cN ÿ1ÿ 2cN
ÿ1ÿ 2cN 4� 2cN

26666666664

37777777775
�A6�

We now write MÄ H as the sum of three ``corner-matrices'',

~MH � 1

4h
�mH1
�mH2

�mH3
� �A7�

where
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mH1
� c1

ÿ2 2

2 ÿ2 0

0

0 . .
.

0

266666664

377777775

mH2
�

ÿ4ÿ 2�1� gL�t�H�1 1ÿ �1� gL�t�H�2 � gLt
�H�
1 0

1ÿ �1� gL�t�H�2 � gLt
�H�
1 �2gt�H�2 0 0

0 0 0

0

0 . .
.

0

266666666664

377777777775

mH3
� cN

0

0

. .
.

2cN ÿ1ÿ 2cN

ÿ1ÿ 2cN 4� 2cN

266666664

377777775

�A8�

Clearly mH1
is N.N.D. (non-negative de®nite) for 8c1R0. Also, mH3

is N.N.D. for cNrÿ1/4.
A simple computation shows that mH2

is N.N.D. if t1 and t2 satisfy

t�H�1 � ÿ
2� d
1� gL

�dr0� �A9�

t�H�2 �
1ÿ gL�1ÿ d�
�1� gL�2

�A10�

Thus we have proved that MÄ H is indeed non-negative de®nite, and therefore MÄ =
1/RMÄ P+aMÄ H is negative de®nite for 81/R>0, with its eigenvalues bounded away from zero
by ÿap 2 /R, (0< a<0.275}, as in the a>0 case treated in the text.
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