
EFFICIENT SOLUTION OF Ax(k) = b(k) USING A−1

ADI DITKOWSKI , GADI FIBICH , AND NIR GAVISH

Abstract. In this work we consider the problem of solving Ax(k) = b(k), k = 1, . . . , K where b(k+1) = f(x(k)). We show
that when A is a full n×n matrix and K ≥ cn, where c ¿ 1 depends on the specific software and hardware setup, it is faster to
solve Ax(k) = b(k) for k = 1, . . . , K by explicitly evaluating the inverse matrix A−1 rather than through the LU decomposition
of A. We also show that the forward error is comparable in both methods, regardless of the condition number of A.

AMS subject classifications. 65F05 Direct methods for linear systems and matrix inversion

1. Introduction. One of the first things we learn in a basic numerical linear algebra course is that in
order to solve the linear system Ax = b, we should not calculate the inverse matrix A−1. For example, we
quote from Matlab’s user guide:
In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inverse
arises when solving the system of linear equations. One way to solve this is with x = inv(A) ∗ b. A better
way, from both an execution time and numerical accuracy standpoint, is to use the matrix division operator
x = A\b. This produces the solution using Gaussian elimination, without forming the inverse.
Similar statements appear in the classical numerical analysis textbooks. For example, Golub and van Loan [7,
page 121] say:
. . .As a final example we show how to avoid the pitfall of explicit inverse computation. . . when a matrix
inverse in encountered in a formula, we must think in terms of solving equations rather than in terms of
explicit inverse formation.
Similarly, Conte and de Boor [8, page 166] say:
. . . given this simple prescription for calculating the inverse of a matrix, we hasten to point out that there
is usually no good reason for ever calculating the inverse. . . . whenever A−1 is needed merely to calculate a
vector A−1b (as in solving Ax = b) or a matrix product A−1B, A−1 should never be calculated explicitly.
Higham [9, page 262] also states:
Not only is the inversion approach three times more expensive, but it is much less stable. . . .we see that
matrix inversion is likely to give a much larger residual than Gaussian elimination with partial pivoting. . .

Thus, the reasons for preferring Gaussian elimination over explicit calculation of A−1 to solve Ax = b
are performance, and accuracy and stability.

In this study we consider the case where we want to solve the equations

Ax(k) = b(k), k = 1, . . . , K, (1.1)

when
1. A is a full n× n matrix.
2. Equations (1.1) have to be solved sequentially, e.g. when b(k+1) = f(x(k)).

The standard, LU-based approach involves a preprocessing stage in which the LU decomposition of the matrix
A is calculated:

[L, U] = lu(A). (1.2)

Then, for each right-hand-side the linear system is solved using a forward substitution and a backward
substitution:

y(k) = L\b(k); x(k) = U\y(k), k = 1, . . . , K. (1.3)

A second, A−1−based approach for solving problem (1.1) is to calculate the inverse of A in a preprocessing
stage:

invA = inv(A). (1.4)

Then, for each right-hand-side the linear system is solved by a single matrix-vector multiplication:

x(k) = invA · b(k), k = 1, . . . ,K. (1.5)
1

2 In this study we show that it is better to solve equations (1.1) using A−1 rather than through LU
decomposition. In Section 2 we consider the performance issue. We first show that the two methods require
the same number of arithmetic operations. However, the actual performance has a lot to do with the way
that optimized computer codes, such as Intel’s MKL BLAS (Basic Linear Algebra Support) package, handle
computer architecture issues, such as caching and memory allocation. Indeed, because the data structure of
a square matrix (A−1) is inherently simpler than that of two triangular matrices (L and U), in our numerical
tests we observe that it faster to solve these equations using A−1 than through the LU decomposition of A.
In Section 2.4 we show that there are more efficient implementations of the LU algorithm then the one given
in equations (1.2,1.3). Even with these improvements, however, the A−1 algorithm is still more efficient.

As noted, the second argument against using A−1 is accuracy and stability. This argument is based on
analysis which showed that the backward error in the A−1−based method is larger than in the LU-based
method, and that the ratio between the two increases with the condition number of A. While there has been
no such analytical results for the forward error, it was implicitly assumed that it would behave similarly.
However, in Section 3, our simulations with randomly-chosen matrices, as well as with three families of
ill-conditioned matrices, suggest that this implicit assumption is wrong. Indeed, we observe that the forward
error is of the same magnitude for both the A−1−based method and the LU-based method, regardless of the
condition number of A.

In Section 4 we list various applications that are expected to run faster when implemented with the
A−1−based method (quasi-Newton iterations, inverse power method, and spectral differentiation methods).
We conclude by showing that the inverse power method for finding the smallest eigenvalue of a 100 × 100
matrix can be 11 times faster with the A−1−based method than with the LU-based method, and just as
accurate.

Our conclusion that using A−1 is superior to using LU decomposition applies to problems in which:
1. A is full, since when A is sparse then L and U are sparse but A−1 is full.
2. Equations (1.1) have to be solved sequentially, hence only level 2 BLAS optimization (matrix-vector

operations) can be used. Indeed, when all the b(k) are known in advance, all the right-hand sides
can be simultaneously solved with a block LU algorithm, i.e., replacing (1.3) with

Y = L\B; X = U\Y,

where

B = [b(1) · · · b(K)], X = [x(1) · · ·x(K)], Y = [y(1) · · · y(K)].

In this case, the block LU algorithm is more efficient than using X = A−1 ·B, since one can exploit
level 3 BLAS optimization (matrix-matrix operations).

2. Performance.

2.1. Arithmetic operations count. We begin with the standard count of arithmetic operations:
Lemma 2.1. The overall number of arithmetic operations needed to solve the system (1.1) in the LU-

based method is

Nlu =
2
3
n3 +O(n2)

︸ ︷︷ ︸
eq. (1.2)

+2Kn2 +O(Kn)︸ ︷︷ ︸
eq. (1.3)

,

and in the A−1−based method

NA−1 =
8
3
n3 +O(n2)

︸ ︷︷ ︸
eq. (1.4)

+2Kn2 +O(Kn)︸ ︷︷ ︸
eq. (1.5)

.

Proof. For the LU-based method the preprocessing stage involves finding the LU decomposition of
A, which requires 2

3n3 +O (
n2

)
arithmetic operations, see [2, page 152]. Then, solving each linear system

involves a backward and forward substitution. Each substitution requires n2 +O(n) arithmetic operations.
Therefore, an overall of 2Kn2 +O(Kn) arithmetic operations are needed to solve (1.3).

3Similarly, for the A−1−based method the preprocessing stage involves finding A−1, which require
8
3n3 +O (

n2
)

arithmetic operations, see [2, page 161]. Then, solving each linear system requires multiplying
b(k) by A−1, which requires 2n2 +O(n) arithmetic operations. Therefore, an overall of 2Kn2 + O(Kn)
arithmetic operations are needed to solve (1.5). ¤

Observation 2.1 shows that the number of arithmetic operations for the LU-based method is smaller
than for the A−1−based method for K ≤ n, and is the same for K À n. More precisely,





Nlu ≈ 1
4NA−1 K ¿ n

Nlu = 2+6λ
8+6λNA−1 K = λn, λ = O(1)

Nlu ≈ NA−1 K À n.

(2.1)

2.2. Numerical tests. The standard approach to estimate run-time of algorithms is to count the
number of arithmetic operations. Hence, Lemma 2.1 and equation (2.1) seem to suggest that the LU-based
method is faster than the A−1−based method. We now show that this is not always the case.

To demonstrate this, we solved linear systems of the form (1.1) using the LU-based and A−1−based
methods. For each method and for each n = 2j , j = 5, . . . , 12, we randomly choose 3 different n × n
matrices, for each matrix we solve the linear system Ax = b(k) 1000 times, sequentially, and calculate the
average CPU time per RHS. This measurement of CPU time does not include the preprocessing time of LU
decomposition or of finding the inverse.

The tests were conducted on a Pentium 4 with 1Mb cache and 2GB RAM using Matlab 7.0 R14 for
Linux. In the first test we used Intel’s MKL BLAS (Basic Linear Algebra Support) package. The average
CPU time per RHS with the A−1−based method is smaller by a factor of 15-35 compared with the LU-based
method (see Figure 2.1), for matrix sizes varying from 32× 32 to 4096× 4096.

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

av
er

ag
e

C
P

U
 ti

m
e

Fig. 2.1. Average CPU time for solving Ax = b(k) using the backward and forward substitution (eq. (1.3), ×) and through
multiplication by A−1 (eq. (1.5), �).

Next, we repeated the same test, but changed the software package that Matlab uses for the linear
algebra subroutines from Intel’s MKL BLAS to ATLAS BLAS. In this case, the average CPU time for a
forward and a backward substitution did not change, but the average CPU time for multiplication by A−1

increased by a factor of ≈ 1.2 − 1.9, hence the A−1−based method was “only” 8-16 times faster than the
LU-based method, see Figure 2.2.

Finally, we ran a benchmark test in which we implemented the multiplication by A−1 and the backward
and forward substitution using a naive straightforward non-vectorized code of a double loop. In that case, the
average CPU time is about the same for forward and backward substitution and for multiplication by A−1,
see Figure 2.3. As expected, the naive implementation was slower than the MKL BLAS implementation.
The matrix-vector multiplication by A−1 was 35-50 times faster (using MKL BLAS) than with the naive

4

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

av
er

ag
e

C
P

U
 ti

m
e

Fig. 2.2. Same data as in Figure 2.1. Also plotted, is the average CPU time using ATLAS BLAS for solving Ax = b(k)

using the forward and backward substitution (eq. (1.3), ◦) and through multiplication by A−1 (eq. (1.5, ¦).

implementation. On the other side, forward and backward substitution using MKL BLAS was only 1.4-2.6
times faster than forward and backward substitution with the naive implementation.

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

av
er

ag
e

C
P

U
 ti

m
e

Fig. 2.3. Same data as in Figure 2.1. In addition average CPU time per RHS using a naive implementation for the
LU-based method (solid) and the A−1−based method (dashes).

We also conducted the same tests on a different Pentium 4 machine (0.5Mb cache and 0.5GB RAM using
Matlab 7.0 R14 for Windows XP). Under this configuration, all qualitative results remained the same, but
the performance ratios changed. For example, the A−1−based method was “only” 15-20 times faster than
the LU-based method using Intel’s MKL BLAS, and 8-12 faster under ATLAS BLAS.

2.3. Data analysis. The simulation of Section 2.2 shows that, for sequentially solving the system and
neglecting the preprocessing costs, the A−1−based method is significantly faster than the LU-based method
(per RHS). Since the number of arithmetic operations per RHS is the same for both methods (see Section
2.1), we conclude that the A−1−based method is faster since the implementation of matrix multiplication in
MKL BLAS or in ATLAS BLAS is faster than the implementation of a forward and backward substitution.
Indeed, when we used a naive implementation, there was no performance difference between the two methods.
In retrospect, the fact that the A−1−based method is faster is not surprising since the memory structure
and indexing of a full matrix is inherently simpler than that of a triangular matrix. Therefore, matrix

5multiplication can be more easily accelerated through software and hardware optimization. In other words,
the performance difference between the two methods is due to the implementation of the numerical linear
algebra software package. This conclusion is further supported by the observation that changing the BLAS
package leads to a change in the performance ratio from 15-35 to 8-16 , see Figure 2.2.

In the numerical experiments shown so far, we neglected the preprocessing cost and considered only the
cost of the solving the linear systems (1.3) and (1.5). This corresponds to the case where K À n, since
then the preprocessing costs are negligible. We now take into account the preprocessing cost and look at
the overall cost of solving (1.1) in both methods. For example, setting K=10 and comparing the overall cost
(preprocessing+solving for 10 RHS) of the two methods, we obtain that the A−1−based method is faster
that the LU-based method for matrices of size n < nth and slower for n > nth, where the threshold is
nth(K = 10) = 700, see Figure 2.4. Equivalently, for a given n we can find a threshold Kth = Kth(n), such
the overall cost for solving (1.1) is faster for the A−1−method when K > Kth and slower when K < Kth.

There is a linear relation between Kth and n. Indeed, the overall cost of the LU-based method is

T preprocessing
lu + K · TRHS

lu = αpreprocessing
lu n3 + K · βRHS

lu n2 +O(Kn, n2), (2.2)

where T preprocessing
lu is the preprocessing cost of (1.2) and TRHS

lu is the cost of the solving the linear sys-
tems (1.3) by forward and backward substitution. The overall cost of the A−1−based method is

T preprocessing
inverse + K · TRHS

inverse = αpreprocessing
inverse n3 + K · βRHS

inversen
2 +O(Kn, n2), (2.3)

where T preprocessing
inverse is the preprocessing cost (1.4) and TRHS

inverse is the cost of multiplication by A−1, see (1.5).
Hence,

Kth =
T preprocessing

inverse − T preprocessing
lu

TRHS
lu − TRHS

inverse

=
(αpreprocessing

inverse − αpreprocessing
lu)n3 +O(n2)

(βRHS
lu − βRHS

inverse)n2 +O(n)
∼ αpreprocessing

inverse − αpreprocessing
lu

βRHS
lu − βRHS

inverse

n +O(1). (2.4)

In Figure 2.5 we plot the value of Kth as a function of n. The results show that Kth ∼ 0.0012n + 1.25, in
agreement with (2.4).

As noted, Observation 2.1 has been traditionally interpreted to imply that the LU-based method is
faster than the A−1−based method for K = O(n) and that the run time of the two methods is the same for
K À n. In contrast, in Figure 2.5 we see that the A−1−based method is faster for K > cn, where c ≈ 0.012.
The reason for this disagreement is the implicit assumption that the number of arithmetic operations is a
good measure for comparison of run-times. This assumption fails, however, to capture the large difference
between βRHS

inverse and βRHS
lu that results from the difference in implementation of matrix-vector multiplication

and of forward and backward substitutions.

10
2

10
−4

10
−2

10
0

n

ov
er

al
l C

P
U

 ti
m

e

K=10

n
th

Fig. 2.4. Overall cpu time of the LU-based method (dots) and the A−1−based method (solid) with K = 10.

6

1000 2000 3000 4000

20

40

n

K
th

Fig. 2.5. Kth as a function of nth (solid). Dotted line is the fitted linear curve Kth = 0.0124n + 1.25

2.4. Improving the LU solver. In our numerical tests so far we used the most straightforward
implementation of the LU algorithm for solving (1.1). We first calculated the LU decomposition (1.2).
Then, for each right-hand-side we solved the linear system using a forward substitution and a backward
substitution, see equation (1.3), which are implemented by a backslash (’\’) or equivalently by the ’mldivide’
Matlab command.

As stated by the Matlab’s help, the command

[L, U] = lu(A);

returns an upper triangular matrix in U , and a “psychologically lower triangular” matrix (i.e., a potentially
permuted lower triangular matrix) in L. The “psychologically lower triangular” form makes it harder to
efficiently implement forward substitution. A faster way is, therefore, to enforce L to be a strict lower
triangular matrix by using the command

[L, U, P] = lu(A), (2.5)

where P is the permutation matrix. Then, the solution to Ax = b can be obtained by

y = L\(P ∗ b); (2.6)
x = U\y;

The additional calculations in this modification (i.e., the calculation of P ∗ b) are O(n), hence are negligible
compared with the time saved by forcing L to be triangular. Indeed, Figure 2.6 shows that using the strict
lower triangular matrix is about 2.5 times faster than the standard method.

The backslash command, e.g. A\b, involves a preprocessing stage in which the properties of the matrix A
are checked in order to pick the most appropriate solver for the problem. Thus, in the case of equation (2.6),
the backslash command identifies that L and U are triangular matrices and uses backward- or forward-
substitution to obtain the solution. Since it is known that L and U in (2.6) are lower- and upper-triangular
matrices, it is possible to bypass the preprocessing stage by using the ’linsolve’ command instead of the
backslash command. Therefore, we use (2.5) to obtain a strict lower triangular matrix L, but replace (2.6)
with

optLT.LT = true; % lower triangular property (2.7)
optUT.UT = true; % upper triangular property
y = linsolve(L, P ∗ b, optLT);
x = linsolve(U, y, optUT);

Figure 2.6 shows that using (2.5) and (2.7) is 4.6 times faster than the standard method, i.e. equa-
tions (1.2) and (1.3), and 1.3 times faster than using a strict lower triangular matrix without linsolve, i.e,
(2.5) and (2.6). Even after all these improvements, however, the A−1 method is still considerably faster.

7

10
2

10
3

10
−4

10
−3

10
−2

10
−1

N

av
er

ag
e

C
P

U
 ti

m
e

Fig. 2.6. Average CPU time for solving Ax = b(k) using standard LU method (solid), LU with explicit pivot matrix
(dash-dotted), LU and linsolve (dotted) and A−1−method (dashed).

3. Accuracy and stability. The second common argument in the Literature against solving Ax = b
with A−1 is its numerical accuracy and stability (see citations in the Introduction). As noted, this argument
is based on analysis which showed that the backward error in the A−1−based method is larger than in
the LU-based method, and that the ratio between the two increases with the condition number of A. While
there has been no such analytical results for the forward error, it was implicitly assumed that it would
behave similarly. Our simulations however suggest that this implicit assumption is wrong. Indeed, we
observe that the forward error is of the same magnitude for both the A−1−based method and the LU-based
method, regardless of the condition number of A.

3.1. Forward error. In the A−1−based method,

‖∆x‖
‖x‖ ≤ cond(A)

‖∆b‖
‖b‖ .

In the LU-based method x is determined by solving the linear systems (1.3), hence,

‖∆x‖
‖x‖ ≤ cond(L)cond(U)

‖∆b‖
‖b‖ .

Since cond(A) ≤ cond(L)cond(U), the worst case relative (forward) error ‖∆x‖
‖x‖ is likely to be larger for the

LU-based method than for the A−1−based method. On the other hand, the roundoff error involved in matrix
vector multiplication is greater than the roundoff error of backward and forward substitution [9, page 262].

We now show that, in practice, the relative error of the A−1−based method is only slightly larger than
the relative error of the LU-based method. To do so, we first solved linear systems of the from (1.1) using the
LU-based and A−1−based methods. For each n = 100, 200, · · · , 4000, we randomly choose 25 different n×n
matrices and a solution vector x. For each matrix A, we first generate the vector b = Ax, then solve with each
method Ax̂ = b, calculate the relative forward error ‖x̂−x‖∞

‖x‖∞ and then average over all 25 matrices. Results in
Figure 3.1A show that the forward error of the LU-based is smaller by a factor of 2-4 than for the A−1−based
method. This 2-4 factor does not change significantly as n changes from 100 to 4000, and cond(A) varies
between 103 to 106. In order to see whether larger differences would appear for ill-conditioned matrices, we
perform the same test with Matlab’s matrix gallery of involutory ill-conditioned matrices (Figure 3.2A). In
this case, the relative forward error for the LU-based method is slightly below the error for the A−1−based
method, differing by a factor of 1−1.5, as cond(A) varies between 1−1016. Repeating this test for tridiagonal
ill-conditioned matrices and asymmetric ill-conditioned matrices gave nearly identical results, with factors
of 1-2 and 1.4-3.5, respectively.

8

0 1000 2000 3000 4000
10

−14

10
−12

10
−10

10
−8

n

R
el

at
iv

e
fo

rw
ar

d
er

ro
r A

0 1000 2000 3000 4000
10

−14

10
−12

10
−10

10
−8

n

R
el

at
iv

e
ba

ck
w

ar
d

er
ro

r

B

Fig. 3.1. A: Relative forward error
|x̂−x‖∞
‖x‖∞ for x̂ = A−1b (solid) and x̂ = A\b (dots). B: Relative backward error for the

same data.

10
0

10
10

10
20

10
−20

10
−10

10
0

10
10

cond(A)

R
el

at
iv

e
fo

rw
ar

d
er

ro
r A

10
0

10
10

10
20

10
−20

10
−10

10
0

10
10

R
el

at
iv

e
ba

ck
w

ar
d

er
ro

r

cond(A)

B

Fig. 3.2. A: Forward error
‖x−x̂‖∞
‖x‖∞ for x̂ = A−1b (solid) and for x̂ = A\b (dots). The two lines are almost indistin-

guishable. B: Backward error
‖Ax̂−b‖∞
‖b‖∞ for the same data.

3.2. Backward error. The backward error ‖Ax̂−b‖ is known to be significantly larger in the A−1−based
method than in the LU-based method when A is ill-conditioned [9, page 262]. Indeed, Figure 3.1B shows
that the backward error of the LU-based method is smaller by a factor of 50-200 than for the A−1−based
method, for the same matrices used to generate Figure 3.1A. Similarly, Figure 3.2B shows that the backward
error of the LU-based method becomes exponentially smaller than for the A−1−based method, for the same
ill-conditioned involutory matrices used to generate Figure 3.2A.

These results, thus, confirm that the LU-based method is superior to the A−1−based method in terms
of backward error. However, comparison between Figures 3.1A and 3.1B and between Figures 3.2A and 3.2B
shows, that the backward error is a poor prediction to the forward error.

Remark: If the matrix A can be diagonalized, the worst case scenario is that b is the eigenvector of the
maximal eigenvalue (in absolute value) and ∆b is proportional to the eigenvector of the minimal eigenvalue.
However, in most applications arising from PDE, this is not the case. The main ’mass’ is concentrated in
the lower modes, i.e. in the eigenvector correlated to the lower eigenvalues, while the ’noise’ is related to the
high frequency modes. Therefore in such applications the worst case scenario is unlikely to happened.

4. Potential Applications. Any application that involves solving many linear systems with a constant
full matrix A can benefit from adopting the A−1−based approach over the LU-based method. We now list
various applications which are potentially suitable for the A−1−based method:

91. Spectral differentiation methods for PDEs: While finite difference methods require solving
linear systems with a sparse banded matrix, spectral methods, in many cases, require solving of
linear systems with full matrices [3]. For example, when solving a parabolic PDE in an implicit
method, each time step involves solving a linear system of the form

Dx(t+∆t) = F (x(t)),

where D is a full matrix which does not vary with time t. In this case, if the number of time steps
K > Kth(n), it is faster to adopt the A−1−based approach, i.e., we invert D at the beginning of the
simulation, and then at each step calculate

x(t+∆t) = D−1F (x(t)).

2. Modified Newton methods: Newton methods are used to find the roots of nonlinear equations.
They involve the iterations

x(k+1) = x(k) − [J (k)]−1F
(
x(k)

)
, (4.1)

where J (k) = J
(
x(k)

)
is the Jacobian of the function F at the point x(k). Hence, x(k+1) is the

solution of the linear system

J (k)x(k+1) = b(k), b(k) = J (k)x(k) − F
(
x(k)

)
. (4.2)

The calculation of the Jacobian at every iteration is typically very expensive. To reduce the cost of
the Jacobian calculation, in the modified Newton method [6], the Jacobian is calculated only once
every several (K) iterations.
The common approach is to avoid the explicit calculation of J−1, and find x(k+1) from (4.2). Our
analysis shows that it is faster to use the A−1−based approach and calculate x(k+1) from (4.1) for
“small” matrices of size n < nth(K).
A similar algorithm which may benefit from applying the A−1−based method is the Update Skipping
BFGS algorithm used in optimization problems [1]. In this case, the iterations of the BFGS method
are

Bkx(k+1) = Bkx(k) − λJ
(
x(k)

)
, (4.3)

where Bk is an approximation to the Hessian of F at the point x(k) [5]. To reduce the cost of
the Hessian calculation, in the Update Skipping BFGS algorithm, Bk is updated only once every
K steps. In this case, Our analysis shows that it is faster to use the A−1−based approach and
calculate x(k+1) from

x(k+1) = x(k) − λkB−1
k J

(
x(k)

)
, (4.4)

for matrices of size n < nth(K).
3. Inverse iteration: The smallest eigenvalue of a full matrix A (and the corresponding eigenvector)

can be found from the sequence ‖v(k+1)‖
‖v(k)‖ , where [2],

Av(k+1) = v(k). (4.5)

The common approach is to calculate v(k+1) using the LU-based method, i.e.,

Ly = v(k), Uv(k+1) = y. (4.6)

However, in this case, calculating v(k+1) using the A−1−based approach

v(k+1) = A−1v(k) (4.7)

is faster if the number of iterations K > Kth(n).

10
Method Equations CPU time (seconds)
[L,U] (1.2), (1.3) 19.76

[L,U, P] (2.5), (2.6) 7.6
[L, U, P] + linsolve (2.5), (2.7) 4.62

A−1 (1.4), (1.5) 1.88
Table 4.1

Comparison of CPU run times for the inverse iteration method.

As a final example, we implement the inverse power method (4.5) using both methods as follows. We ran-
domly choose 250 random 100×100 matrices. For each matrix we measure the overall cpu-time (preprocessing
and iterations) needed to calculate the smallest eigenvalue using the inverse power method implemented with
the A−1−based method (4.7) and the LU-based method (4.6). We stop the iterations when the relative error
is below 10−14 (with respect to the smallest eigenvalue found by Matlab’s eig function).

In our simulations we observed that the A−1−based method was about 11 times faster than the LU-
based method (see Table 4.1). The average number of iterations needed for the iterations to converge was
269 in A−1−based method and 264 in the LU-based method. This 2% difference is probably due to the larger
roundoff errors in the A−1−based method. Therefore, in this case, the A−1−based method is significantly
faster than the LU-based method, and just as accurate. Using the “accelerated” LU algorithms (see Section
2.4) lead to a considerable reduction in the overall CPU time, but was still 2.5 times slower than using A−1.

Acknowledgments. We thank Eli Turkel and Sivan Toledo for useful discussions.

REFERENCES

[1] J.E. Dennis and Jr. Schnabel and B. Robert, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,
Prentice-Hall, New York, 1983.

[2] N.L. Trefethen and D. Bua, Numerical Linear Algebra, Siam, Philadelphia, 1997.
[3] N.L. Trefethen, Spectral methods in MATLAB, Siam, Philadelphia, 2000.
[4] C.T. Kelley, Solving Nonlinear Equations with Newton’s Method, Siam, Philadelphia, 2003.
[5] K.G. Tamara and D. P. O’Leary and L. Nazareth, BFGS with update skipping and varying memory,SIAM J. Optim.,Vol.

8, 1998.
[6] A. Quarteroni and R. Sacco and F. Saleri, Numerical Mathematics, Springer, New-York, 2000
[7] G. Golub and C. van Loan, Matrix computations, 2rd ed., The Johns Hopkins University Press, London, 1989.
[8] S. D. Conte and C. de Boor, Elementary Numerical Analysis, 3rd ed., McGraw-Hill book company, 1980.
[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Siam, Philadelphia, 1996.

