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Abstract. An analytical method for the solution of non-linear
force-free magnetic field (FFF) equations is proposed. In this
method, the mathematics is carried out in a special orthogonal
system of coordinates in which one of the coordinates, say u,, is
taken along the (local) gradient of &, which is defined by the FFF
relation a=4nJ/B (J and B are the current and magnetic field,
respectively). Thus, while generally a=oa(x;) (i=1, 2, 3), in the
special system of coordinates used here, u; (i=1, 2, 3), taking
the unit vector e, as e, =Va/|Val, it follows that o=of(u,).
Furthermore, from the FFF relation B- Va =0, it also follows that
B, =0 and B = B, + B;, where B, and B, are functions of u,,u,
and u,. After the FFF equations are solved for B, and Bj in this
particular system of coordinates, upon transforming to a laborat-
ory, say, cartesian system of coordinates one obtains the three
component vector magnetic field as a function of «, where o
=ufu,(x, y, z)]. Thus, specification of « now provides the explicit
FFF solutions of B,, B,, and B,.

Several, relatively, simpler illustrative cases are considered in
detail. As a particular case, the axisymmetric solution obtained by
Low (1982) is recovered.

Key words: hydromagnetics — Sun (the) magnetic fields — stars:
magnetic field — Sun: the corona

1. Introduction

The force-free magnetic field (FFF) model, in which the electrical
current is parallel to the magnetic field (the Lorentz force is zero)
represents a useful approximation to the magnetohydrodynamic
description of many physical systems. Its use is adequate in the
static cases characterized by low-beta values, f=8nnkT/B?«]1,
when the effect of the pressure gradients and gravitational forces
of the plasma trapped in the magnetic field can be neglected. Such
situations may occur in both astrophysical and laboratory
(fusion) plasma systems.

The FFF model is of great interest in the lower (solar) corona
case, where situations with f<0.1 may occur. Indeed, since only
photospheric and low-chromospheric in-situ magnetic field ob-
servations can be carried out, the magnetic fields at larger
heliocentric distances have to be inferred by theoretical methods.
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Because of the mathematical complexity of the problem,
historically, the linear FFF model in which the proportionality
scalar function a(r) is taken to be space — independent was first
considered («(r) =4nJ/B) (see, e.g., review papers by Levine 1975;
Low 1985; Gary 1988; also, Priest 1982).

The existing theoretical work on the non-linear FFF models
falls into three categories:

Analytical work, applying to the cases in which the magnetic
configurations are independent of one of the spatial coordinates
and the solutions are given in terms of a generating function to be
specified a posteriori (see, e.g. Low 1982; also Priest 1982). More
specifically, in this model the field is taken to be symmetric about
the axis of a spherical-coordinate system and lies on concentric
spherical surfaces. The existence of a larger class of axisymmetric
and nonaxisymmetric solutions has been pointed out by Chang &
Carovillano (1981) and derived for the spherical case by Low
(1988). The magnetic fields still lie on concentric spherical sur-
faces, however, the system is no longer symmetric about the axis
of the spherical-coordinate system.

Numerical work, in which, starting from prescribed (or mea-
sured) boundary values at a surface (z=0, say) representing the
photcsphere, one solves for the vector magnetic configuration in
the half-space z >0 (see, e.g., Sturrock & Woodbury 1967; Barnes
& Sturrock 1972; Sakurai 1979, 1981; Yang et al. 1986; Wu et al.
1985, 1990; Cuperman et al. 1990).

Mixed analytical-numerical work. A significant extension of
the axisymmetric solution of Low 1982 was recently achieved by
Low & Lou (1989). Unlike the previously existing solution, the
new one is such that the total energy in the half-space z>0 is
finite. Thus, working in spherical polar coordinates (with 0/0¢
=0), separating the dependence on the variables r and 6 and
choosing a convenient r-dependence for the field components, the
authors obtained a second order, nonlinear ordinary differential
equation for the function P(f), describing the 6-dependence,
which they solved numerically as an eigenvalue problem:
P(0=0°)=P(6=180°)=0.

In this work we develop an analytical method for solving
nonlinear FFF model equations in the non-axisymmetric case.
This is achieved by carrying out the mathematical calculations in
an orthogonal system of coordinates in which one of the co-
ordinates, say u,, is taken along the (local) gradient of the scalar
function a(r). Consequently, a=o(u,) and B, =0 and equations
for only the field components B, and B, have to be solved. Non-
axisymmetric solutions are obtained and discussed. As a particu-
lar case, the solution of Low (1982) is recovered.
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2. Solution of FFF model equations

2.1. General case

The steady state equations describing force-free magnetic field
configurations are

V x B=aB (6]
and
V-B=0. 2

Equation (1) states that the electric current density J=(4n)"!
V x B is proportional to the magnetic field B: J=aB/4x. In the
general case, the proportionality scalar quantity o is a function of
the space coordinate, x; (i=1, 2, 3). Upon taking the divergence of
Eq. (1), by (2), one obtains

B-Va=0, (3)

which indicates the constancy of « along individual field lines, or,
conversely, the orthogonality of the vector Vo and the magnetic
field vector at any point in space. Then, in the domain in which Va
is an analytic function with a non-zero norm, we choose a local
system of coordinates u; (i=1, 2, 3) such that one of the axes, say
uy, is in direction of the vector Va. That is, we define the unit
vector e, by the equation

e;=Va/| Val|. Q)

The other two unit vectors, e, and e; are taken to be orthogonal
to e, and to each other. Then, as mentioned above, the magnetic
field vector reduces to!

B=B,+ B, )

and lies in the plane orthogonal to e, (i.e. the plane u, =constant).

Consider the new system of orthogonal coordinates (u,, u,, u3)
with by the Lamé coefficients (h,, h,, h,), respectively. In these
coordinates, by (3)—(5), Egs. (2) and (1) provide the following
relations, respectively:

(h h Bz)+ (h h,B3)=0, (6)
E(hsBa)_Eu—(thz)=0, (7)
h T, 6u1 ~—(h3B3)=0aB, ]
and
d h,B B 9
hhzaul(z 2)=0B;. (&)

Thus, the solution of the initial Egs. (1) and (2) is equivalent to the
solution of the four equations (6)—(9), in which only the magnetic
field components B, and B, are present.

For mathematical convenience we define the functions

B2=hyB,, By=h;3B; (10)

! 1t should be mentioned that within the FFF model equations it
is not possible to choose one of the axes of coordinates along the
(local) vector magnetic field. Indeed, if B=B,, say, Eq. (1) is
satisfied only for the trivial case B, =0.
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and
Hy=hihy/hy,  Hi=hhy/h,. (11)
By (10) and (1 1), Eqgs. (6)—(9) become, respectively
6
(Hzﬁz)+ (Hsﬁs) 0, (12)
gu—(lga)_ﬁ(ﬁz)=0’ (13)
1
—H—ZaE;l‘(ﬂs) B2 (14)
and
! 15
Hox aul ——(B2)=5s. (15)

Inspection of Egs. (12)-(15) reveals that Egs. (12) and (13)
contain only the derivatives of the field quantities , and f; with
respect to u, and u;, while Egs. (14) and (15) contain only the
derivatives of the same quantities with respect to u,. This suggests
solving separately the set of Egs. (12), (13) and the set of Egs. (14),
(15). For convenience, we denote by f, and f; the solutions of
Egs. (12), (13) and by f, and S, the solutions of Egs. (14), (15).

2.1.1. Solution of the Egs. (12) and (13) for §, and §,

Inspection of Eq. (13) indicates that, provided that the derivatives
of B, and B; are continuous functions of the coordinates u, and
u, there exists a function F satisfying the relations

Ez=6F/au2, 53=3F/6“3- (16)
Then, substitution of Egs. (16) into Eq. (12) provides the equation

—6—<H2—6—F> d <H3 d >=0 (17
ou, Ju, Ou, Ou,

or equivalently

AFy,+EF33+dF,+EF;,=0 (18)

where F; and F; represent the first and second order derivatives of
the function F with respect to the coordinate u;(i=2, 3), respect-
ively, and the quantities @ . . . € are defined as follows:

a=H,, ¢=H, d=0H,/0u, &=0H,;/0u,. (19)
Since, by (13)
a¢=H,H,=h}>0 (20)

it follows that Eq. (18) is an elliptic, second order partial differ-
ential equation for the function F. The solution of Eq. (18) will be
considered in the next section for various specific situations.

2.1.2. Solutions of Eqs. (14) and (15) for f, and f,

Upon substituting the eyfpression for ﬁa from Eq. (15) into Eq. (14)
and the expression for 8, from Eq. (14) into Eq. (15) one obtains
the following equations, respectively

_ [ 1 )]—‘ @1)
~Hoa Hsaaul(ﬁz =b,
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and

: 6[1 a(ﬁ)]ﬂ (22
Hyo du, | Hyadu, = ° ¥

Next, upon multiplying Egs. (21) and (22) by h% a2 (notice that
H,o-Hya=h?a?), after some algebra, one brings them to the
following form, respectively:

Ly by-" (B¢ 3,=0 23
E‘_%(ﬂz)‘i‘ zéu—l(ﬂz)'Fczﬂz— (23)
and
(ﬂs)'*'B (ﬁs)"‘csﬁs— (24)
Here
o 0
by=———I[In(H;»)], ¢=hid? (25)
ou,
and
- 0
b3=—a—[ln(Hz°‘)]» b3=—¢,. (26)
u

Equations (23) and (24) are second order ordinary differential
equations for B, and B, respectively. Unlike the Eq. (18) for f,
and B3, in which the coefficients d . . . & are known functions of
the Lamé coefficients corresponding to the particular system of
coordinates chosen in Egs. (23) and (24), the coefficients b,, b, ¢,
and ¢é,, are also dependent on the quantity a(u, ), the free function
which determines the structure of the FFF magnetic
configuration.

In the general case, Egs. (23) and (24) can be solved, e.g., by
using a series expansion (Frobenius’ method). In this work, we
will consider two classes of solutions namely

(i) B2 (uy, us, u3)=gz fluy)
Ba(uy, u, “3)=/73 “fluy)

and

(i) Ba(ur, s uz)=P g, u3)
Ba(uy, iz, us) =P g(uz, u3).

2.2. A class of solutions for the case in which (0/0u,) (h,/h;)=0

A relatively simple analytical solution can be obtained in the
special case in which the Lamé coefficients satisfy the condition

i("i):o. @
Ou, \ hy

In such a case, Eqgs. (23) and (24) reduce to, respectively

0 1 ~

ou, I:hl —(f>) ]+h1aﬂz=0 (28)
and

0 1

o, [ﬁﬁ"’”]*"‘ aB;=0. (29)

Defining a function A by the relation
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1 dA (30)
h dul
we find the solutions of Eq. (28), and (29)
B,=b,cosA+b,sinA. (31a)
and
/?3=Z—3(b2 cosA—b, sinA). (31b)
2

So far we considered separately the solution of the sets of
Egs. (12), (13) and (14), (15), respectively. This provided the set of
solutions §, and B, and f, and f,, respectively. The final step
would be to obtain the combined consistent dependence of 8, and
B on all three coordinates, u;,i=1, 2, 3. This step will be carried
out for the illustrative specific case considered in the next section.

Before proceeding with the consideration of particular illus-
trative cases, we observe that, independent of the specific situa-
tion (geometry, symmetry) discussed, if F =F (u,, u;) and conse-
quently 8f,/0u, =0 f;/du, =0, there are no combined solutions
of the type

B=PB> fu), Bs=Psf(uy). 32

A mathematical proof of this statement is given in Appendix L.

3. Illustration of the method

3.1. The case of spherical coordinates®

In this case we take® the polar spherical coordinates (r, 0; ¢) with
e, =Vo/||Va| =e,. )
Then, the magnetic field is

B=Bye,+ B,e,. %)

Thus, the magnetic field vector lays on spherical surfaces de-
scribed by r=constant values.

The Lamé’s coefficients are h; =1, h,=r and h; =rsin0 and
the field functions, B, are

B,=rB,  Py=rsinf B, (10)
and
H,=sinf, H;=1/sin6. (119
The four equations to be solved now read, respectively,
0 ..
(smH B+ ¢( B3 ) (129
2 (B -2 (=0 13
2073 ¢ 2)= (139
L2 g4 1
asinf or > 2 (14)

2 The spherical coordinates are here chosen for illustration
because of their familiarity. However, any other set of orthogonal
unit vectors on the sphere u; =const. can be equally well consi-

dered (for example, e, =(e,+ ed,)/ﬁ, e;=(e, —e¢)/\/2)).

3 For convenience, with the addition of the “prime” symbol, the
numbering of the equations in this section is the same as that of
the corresponding equations in Sect. 2.
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and

sinf 0

o, B)=bs (15)

3.1.1. Solution of Egs. (12') and (13)
The function F (6, ¢) is related to f, and f; by the equations

B,=0F/00, B,=0F/o¢. (16)
The equation for F then reads

sin?6 Fgo+ F 44 +sin6 cosd Fy=0. (18)
Using the transformation

n=—In[tan(6/2)] (33)
one can bring Eq. (18') to the equivalent form

F oyt Fyy=0. (34)

‘This is Laplace equation in the canonic form. Thus, we solve it by

the method of separation of variables by assuming

F=H(n)- ®(9) (39)
By (35), Eq. (34) becomes

Hml (D¢¢_

H o 0 e

where H,, and ®,, represent the second order derivatives of H
and @ with respect to n and ¢, respectively.
Denoting

®,,/®= —n? 37

and considering the boundary condition ®(¢)=®(¢ +2r) one
obtains the solution of Eq. (37), namely
®=a,, cos(nd)+a,,sin(ned) (38)
Next, by (36) and (37) one obtains the equation for H, namely

H

—M_n2, 39
H (39)
The solution of Eq. (39) is
H =a,; exp(nn)+a,q exp(—nn)
=a,;cot” 5+ ans tan” 5 (40)

In the last part of Eq. (40), use of the transformation (33) was
made.

Collecting the results, Egs. (35), (38) and (40) one obtains the
complete solution of Eq. (34), namely

0 0
F,=(a,, cosn¢+a,,sinng) (a,,3 cot”5+a,,4 tan”5>. (41)
Then, by (16") and (41) one obtains
Bo2(6, ) =(n/sin6)(a,, cosne + a,, sin ng)
0 0
x| —anscot’>+aytan" | 42)

649

and

B'n3(65 ¢)=n(_anl Sinn¢+an2 Cosn¢)

0 0
x| a,; cot §+a,,4tan ) (43)
3.1.2. Solutions of Egs. (14') and (15)

Since the condition (27) is satisfied, the solution of Egs. (14')—(15")
are

By=b,cosA+b,sinAd (44a)
and
Bs=(b,cosA—b, sinA)sind (44b)

where the function A4, defined by Eq. (30) is related to a by the
equation

a=dA/dr. (30

3.1.3. Solutions B;(y;), j=2, 3;i=1, 2, 3

Following the discussion at the end of Sect. 3 we consider the
following class of solutions:

B=PB,-9(0.8), Bs=B3"9(6,0). 45)

Notice that the function g(6, ¢) in Eq. (45) is the same for both
components f, and f;.

Upon substituting the expressions (45) with §, and f; given
by Egs. (31a) and (31b) into Egs. (12) and (13’) one obtains,
respectively

0 0
% [gsinf(b,cosA+b,sinA)] +£ [g(bycosA—b,sinA)]=0
(46a)

and

0 0
% [gsinf(b, cosA—b,sinA4)] —55 [g(b,cosA+b,sinA)]=0.
(46b)

3.1.4. Axisymmetric case-recovery of Low (1982) solution

We start by observing that the r-independent integration con-
stants b, (0, @) and b, (0, ¢) in Egs. (46a) and (46b) are arbitrary
and that « in Eq. (30) is defined up to an additive constant. To
recover the axisymmetric case of Low (1982), (i) we consider b,
and b, to be also 0 and ¢ independent and (ii) take the additive
constant such as to result in one of the integration constants, say
b,, being zero.

We proceed with step (i). Taking b, and b, to be coordinate
independent and equating the coefficients of cos4 and sinA4
appearing in the left and the right sides of Egs. (46a) and (46b), one
obtains the following set of equations:

0 . dg

b, 70 (gsin@)+b, 5E=0 (47a)
0 . dg

b, 70 (gsm(?)—b1%=0. (47b)
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From (47a) and (47b) one easily finds

(b§+b§)—a—(gsin0)=0 (48)
06

and

(bf+b§)i(g)=0- (49)

a¢

Equation (49) indicates that g=g(6). Thus, by inspection, the
solution of Eq. (48) is
g=1/sin0. (50)

Thus, by (45), (31a), (31b’) and (50) and using also the
definitions of 8, and B; (Eq. (10')), one obtains the final solutions

By=——(b,cosA+b,sinA) (51)
rsinfl

and

B,= (b, cos A —b, sin A). (52

rsinf
We now proceed with step (ii). As discussed above, we take b, =0
and obtain

By= sinA.

bycosA, By=-—

(33)

rsinf rsinf

The remaining constant, b,, can be determined from the condi-
tion of matching the observed photospheric magnetic field, the
photosphere being situated at a (radial) distance “a” from the
origin:

By(r=a, 6=90°)=B,cos A(a). (54)
Then, from (51) and (54) one obtains
b,=aB,. (55)

Finally, using the notation ¢= —4, ie., changing the defini-
tion (30') to

a=—04/or (30)
we can write Eq. (53) as
aB, - N
= [cosp(r)-ep+sing(r)-e, ] (56)

rsinf

which is just Eq. (9) of Low (1982). The transformation from the
spherical to the Cartesian coordinates provides the magnetic field
components B,, B, and B, (Eqgs. (11)—(13) in Low 1982).

3.1.5. Non-axisymmetric case

We now regard the quantities b, and b, as functions of 6 and ¢
(but not on r). Equating the coefficients of cos4 and sinA in
Eq. (46) provides, respectively

%(b1 sin0)+£(b2)=0 (57a)
and

i(bz sin9)—i(b1)=0. (57b)
o6 o

Comparison of Egs. (57a) and (57b) with Egs. (12') and (13"
indicates the following relationships to hold

0F 1 OF
bi=— by=—— .
00 sinf 0¢

By (58) and (41) one obtains

(58)

n 0 0
b,y =——(a,  cosn¢ +a,, sinng){ —a,;cot"=+a,,tan"~ | (59)
sinf 2 2

and

0 0
2 =_L (—a,, sinng+a,,cosng)| a,;cot"-+a,,tan"- ).
sinf 2 2
(60)
Finally, by (44a), (44b), (10), (59) and (60) one obtains the
sought solutions, namely

By=

{I:ao + i n(a,, cosnd + a,, sinng)

n=1

rsind
0 0
x| —a,3cot” 2 +a,, tan"i cosA

0
+ Y n(—ay,, sinng +a,, cosng)

n=1

X a,,3cot”g+a,,4tan”g>sinA} (61)
and
B,= 1 {i n(—a,, sinn¢g+a,, cosng)

rsinf (=

X <a,,3 cot"g-i- a,, tan” 9 >cosA

2 2
—[ao+ i n(a,, cosn¢ +a,, sinng)
n=1
X <—a,,3 cot"§+a,,4 tan"g ) :IsinA } (62)

In Egs. (61) and (62) the coefficients ag, @,; . . . @, (n=1,2...)
are real arbitrary constants; 6, ¢-the polar coordinates; and A-the
free function determining the FFF-characterizing-function a (see
Eq.(30)).If a,;=0, Egs. (61) and (62) reduce the axisymmetric case,
Egs. (51) and (52).

Writing Egs. (61) and (62) in the form

By=

(bycosA+b,sinA) 61)

rsinf

B,= (b,cosA—b,sinAd) (62)

rsinf

it can be easily found that the energy density E=(1/87) (B§ + B})
is

E—l( : >l(b2+b2)
" 87\ rsind ree

where b7 and b3 are functions of 6 and ¢. Thus, E decreases with
distance as 1/r%
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3.2. The case of general cylindrical coordinates

Consider a cylindrical system of coordinates (u,, u,, z) with

a=a(z) and choose*
e;=Va/||Va| =e,. (4a)

Thus, e, and e, are unit vectors orthogonal to e; and to each

other. The magnetic field vector is
B=B,e,+Be, (5a)

and lies on surfaces described by z=constant values. The follow-

ing equations hold
0 0
a_(hzh331)+_(h1h352)=0, (62)
Uy U
0 0
——(hyBy)———(h,By)=0, (7a)
Ju, ou,
h =aB 8
h2h35u3(2 2)=0B, (8a)
and
7 ——(h,B,)=aB (9a)
o a
hyhy duy ¥
Define
Bi=hB,, B,=h,B, (10a)
and
Hy=hyhs/hy, Hjy=hihy/h,. (11a)

Next substitute (10a) and (11a) into (6a)-(9a) to obtain,
respectively

0 0
5-—(111/31)+“—(H2ﬁz)=07 (12a)
u ou
(ﬂz)— (ﬂ) 0, (13a)
! 14
—ﬁaﬁz—m (14a)
and
1 0 _ 5
mm/ﬂ—ﬁz (15a)

For convenience, consider the circular cylindrical coordinates
system (p, @, z), with h; =1, h,=p and hy=1. Then®

e;=e, 4"
B=B,e,+B,e,, (57)
Bi=B, B,=pB, (10”)
and

H,=p, H,=1/p. 117)

4 Comparison with Egs. (4)—(15) indicates a cyclic permutation of
the subscripts: 1, 2, 353, 1,2

* By analogy with the numbering in Sect. ITIA, for convenience,
we now use (4”), (5”) etc.

651
3.2.1. Solutions of the type f,f(z), B5f(2)
In the present case, Eqs. (12a) and (13a) become
+ 12//
(pﬁl) 6¢( ﬁz) (12")
and
—(ﬁz)——(ﬁ1) 0. (13%)
0¢
The equations corresponding to Eqgs. (16) of Sect. III are
g1=aF/aP, /3~2=6F/0¢
and the equation for the function F is
0 ( g F>+ > F=0 (18")
Poo\Pap’ JTog?

As shown in the Appendix, since F is independent of z, no
solution of this type exists.

3.2.2. Solution of the type B, g(p, d), B,&(p, d)
The equations corresponding to (14) and (15) read

1 0
—— —(B2)=8, (14")
po 0z
and
0
22 (B,)=8. (15")
o 0z

Since in this case one has (9/0z) (h,/h,)=0 (this is the equivalept
of Eq. (27) for the spherical coordinates case), the solutions for f,
and f, are

B,=b,cosA+b,sinA (31a”)
and

[fz =p(b,cosA—b,sinA)

with

a=dA/dz. (307)

Upon substituting f, g and f,g into Eqs. (12”) and (13”) one
obtains

0 0
P [pg(b,cosA+b,sinA)] +5E[(b2 cosA—b,sinA)]=0
P

and (46a")

0 0
—[pg(b,cosA—b,sinA)]——1[(b,cosA+b,sinA)]=0.
op ¢

(46b”)

Equating to zero the coefficients of cos 4 and sinA4 in (46a")
and (46b") provides, respectively

0 0
b, — b,—g=0 47a"
lap(pg)+ za¢g (47a")
and
6 0
(pg) by —g=0. (47b")

a¢
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Thus, one obtains

(bf+b§)%(py)=0 (48”)

and

(bf+b§)—a—g=0- (49")
¢

This means

g=/1; (507)

and, therefore

B,=(bycosA+b,sind)/p (51"

and

By=(b,cosA—b,sinA)/p. (52")

3.2.3. Non-axisymmetric solutions of the type B, and B,

Taking b, =b,(p,¢) and b, =b,(p,¢) in Egs. (312") and (31b"),
substituting the resulting equations in Eqs. (12”) and (13”) and
equating to zero the coefficients of cosA and sinA lead to the
results

%(pbeé%bz—O (57a")
and

0 0
a_(pb2)_5$bl_0 (57v")
Define the function F by the relations

0 0

pr%F, bl=a—pF. (58")
Upon substituting (58a”) in (57a”) provides

0 0 02
p$<p5;F>+5FF=O. (63)

This equation can be solved by separation of variables and by
using the boundary condition F(¢)=F (¢ +27). One obtains

F=aglnp+ Y. (a, cosng+a,,sinng)(a,p"+a,.p").

n=1

By (51”) and (64) one obtains

(64)

4o 3 n—1 -n—1
bl =—+ z n(anl cosn¢+a,,2 SInn¢)(an3p —Quap )
pP

n=1
(59”)
and

@

bi= 3 n(—a,sinng+a,;cosnd)(a,sp" ' +ap " "). (60")

n=1

Finally, upon substituting these results into Eq. (31”) gives

B,,=|:a0/p+ Y. n(a, cosng+a,, sinng)

n=1

X (@y3p" ! —a,.4p’"“)]cosA

a0
+|: Y. n(—ay, sinng+a,, cosnd)
n=1

X(ansp"—1+an4p—"_l)]5in14 (617)
and
B¢=|: Y. n(—a, sinng +a,, cosnd)

n=1

X(ansp"_l+an4p_"_1):|COSA

+[a0/p+ Y. n(a, cosne +a,,sinng)

n=1
X(an3pn_1_amtp_"_l)]SinA' (627)

Since the properties of the FFF magnetic configuration are
determined by the function « (which in the present case is o = (z))
and not by the arbitrary choice of any particular system of
coordinates, the solutions (61”) and (62”) hold for any other
representation in the plane z=constant; for example, Cartesian
coordinates, parabolic cylindrical coordinates, bipolar coordi-
nates, etc.

4. Discussion

Figures 1-3 illustrate graphically some of the results obtained in
this paper. For convenience, we choose A(r) = nr?, from which, by
(31), one obtains a=2nr (See Eq. (1)). Also, we normalize the
radial distance by defining 7#=r/r,, where r, is a characteristic
length of the system (for example, the solar radius). For the
magnetic field components we use the normalization B;=
Bj(ro/a,;) (j=0,¢) where a,; is one of the non-zero coefficients
appearing in Eqgs. (61) and (62). Thus, based on Egs. (61) and (62)
we obtain the following specific illustrations:

I‘c||||I||||]|||1§IA§:_|IIII|||l|]‘|

L ) -

S LR RN
MAANNA AN RRRREEN!

L AAMMAM AR N Y g
ol nHRUHHINN ]
T

LLLLLL LY Yy vy vy oy 1
L [ O O O O O O O T AR T I T B W W ]
\ \\\‘l‘\\‘\\‘\‘t\\

L t%‘%\{l&“““““\\\ .
0.0 14|L|1||||1|1|11|||||411|-::|—
-05 0.0 05 10 1.5 20 25

&/

Fig. 1. Unit vector magnetic field, B/| B| in the (6, ¢) plane at 7=1, as
given by the analytical solutions Egs. (61) and (62). The vertical arrows
represent the axisymmetric case with a,=1and a,;,=0(n,i=1,2,3---).
The oblique arrows correspond to a non-axisymmetric situation for
which a,=0, a,, =a,,=4a,3=a,,=1and q,,=0 (n>1,i=1,2,3...)
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*r

Fig. 2a—d. The magnetic field components B, and B, for the non-axisymmetric case and the parameters considered in Fig. 1, at four heights labelled
F=1, \/ 1.5, \/ 2and 2. a Dependence of B, on ¢ for fixed 6-value, namely ¢/n=0.2. b Same as in a, for 8/ =0.4. ¢ Dependence of B,, for §/n =0.2;d Same

as in ¢, for /=04

Figure 1 gives the unit magnetic field vector, B=B/|B|,
B=B,+ B, on the 0,¢ surface at, 7=1.% The vertical arrows
represent the axisymmetric case, ap=1, a,,=0 (n,i=1,2,3...)
and consequently B;= B,r,. The oblique arrows correspond to a
non-axisymmetric situation for which we (arbitrarily) chose a,
=0, a,,=ay,=a,3=a;4=1,and a,;=0forn>1,i=1,2,3 .. .;
then, again B;=B;r,. As it is seen, in the axisymmetric case,
besides being independent on ¢, the magnetic field vector has
opposite signs in the domains 6 < /2 and 0> 7/2 and vanishes at
0=m/2. The situation is much more complex in the non-axisym-
metric case — here, the direction (as well as magnitude) of the
magnetic field depends on both 6 and ¢ and as a rule is quite
different from that of the axisymmetric case: angle — differences of
up to 180° can be found!

Figure 2 gives the magnetic field components B, and B, at
four height values (F=1, \/ 1.5, \/ 2 and 2) for the non-axisym-
metric case and the parameters considered in Fig. 1. For illustra-
tion, in Fig. 2a we present the dependence of B, on ¢ (0<¢ <2n)
for a fixed 6-value, namely 6/n=0.2 (the same results hold for 6/n
=0.8). Figure 2b gives the same type of information for 6/n=0.4

% From Egs. (61) and (62) it follows that the unit vector Bis
characterized by the following periodicity properties: B(4)=
B(A+2mn), n=0, +1,2 ... and B(A+n)= —B(A)

(or 0.6). Figure 2c presents the dependence of B, on ¢ for 6/ =0.2
(or 0.8). Figure 2d differs form Fig. 2c by the value of 6 — here
0/n=0.4 (or 0.6).

Finally, Fig. 3 gives the 0-dependence of the field component
B, for fixed ¢-values, at the heights and non-axisymmetric
parameters indicated in the caption to Fig. 2. As it is seen, the
component B, exhibits a cyclic behavior, as a function of ¢. Also,
referring to Eqs. (61') and (62') one sees that B, differs from B,bya
phase n/2, entering through the functions sin A(r) and cos A(r).

To summarize, in this work we developed an analytical
method for the solution of non-axisymmetric, nonlinear force-free
magnetic field equations. This achievement was possible by
carrying out the mathematics in a reference system in which one
of the coordinates is taken along the local gradient of «(r), the
function characterizing the FFF configuration. That is, we took
e, =Va/| Va|, which results in B, =0, and only solutions for the
other two components B, and B; have to be determined. Thus,
after B, and B; are found in a conveniently chosen system of
coordinates (type of coordinates as well as orientation of the axes)
upon transforming to another, e.g. carthesian, reference system
one obtains a three component vector magnetic field representa-
tion (B,,B,, B, in the cartesian case; this corresponds to the
quantities observed by spectroscopic means at the photospheric
level).
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Fig. 3. 0-dependence of the field component B, for the non-axisymmetric case and the parameters considered in Figs. 1 and 2, at four heights labelled

F=1,/1.5, /2 and 2

"To obtain relatively simple analytical expressions for the
solutions, we considered the case in which (d/0u,)(h,/h;)=0,
where h, and h; are the Lamé coefficients and then applied the
formalism to the spherical system of coordinates. Choosing a(r)
=a(r), ie. taking e;=e,=Va/| Va|, resulted in B,=0, B,#0,
B,#0. A different choice of the functional dependence of «, say

a=0o(6) or a=a(¢) (or a combination of r, 6, ¢) would result into
B,#0, etc. As a particular case, these results reduce to the Low
(1982) solutions, holding for the axisymmetric (3/0 ¢ =0) case.

We also applied the formalism developed here to the case of
general cylindrical coordinates with a=a(z) and B laying in the
plane z=constant.
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The analytical solutions obtainable by the method developed
in this work can be used, under appropriate physical conditions
(see Introduction) (i) to obtain the magnetic field pattern of
certain astrophysical or laboratory situations; and (ii) to provide
tests cases for the numerical methods aimed to extrapolate the
magnetic fields above solar (and, more general, stellar) active
regions, using as boundary conditions the spectroscopically
observed three component photospheric magnetic fields.

Appendix I

We here prove the statement on the inexistence of solutions of the
type represented by Eq. (32).
Since by definition F =F (u,, u,) it follows

OF [ 0u, =0 (A1)
and, therefore
0B, 0P,

A L 2
du, Ou (A2)

Then, by Egs. (14), (15), (32), (A1) and (A2), after some algebra,
one obtains

(1/f) (2f/ duy)=—(B,/ B3) H,o (A3)
and

(1/£) (0f/ duy)=—(B3/ B,) H1e (A4)
or, equivalently

Bo=+ikp, (A%)
where k=h,/h, is a real function. Denote

B (uy, uz)= Ez,x (uy, u3)+ iﬁz,l (uz, u3) (A6)
and

S () =fr(uy)+f; (uy). (A7)

In (A6) and (A7), the subscripts R and I stand for real and
imaginary, respectively. Thus, the quantities f, g, [72,,, frand f;
are real functions.

From (A5) and (A6) one has

By=—(£)k(B2.1+iB,.x) (A3)
From (32) and (A6)—(A8) it follows

By =Bof=B2.rfr— B2t fi)+i(B o fi+Baifr) (A9)

and

Bs=Bsf=tk[ —(Bo.ifa+Borfi)+i(Borfx—Faify)  (A10)

By definition, the field components B, and B, (and corres-
pondingly, the quantities ff, and f,) are real functions; it follows

EZ,Rﬁ+E2.IfR=O (A1)

655

and

Ez,kfk“ﬁz,lfl=0 (A12)

Assume f§, x#0 and f, ;#0 and divide (A11) by (A12) to
obtain

fl/fR= _fR/fl (A13)
or
fi=—r% (A14)

The Eq. (A14) is satisfied only if fr=f;
=0 for all u;, u, and u, values.

Alternatively, assume f§ 2,1=0. Then, from (A11) and (A12)
one has

ﬂZ RfR BZ R.fI (AIS)

The Eq. (A15) is satisfied only if f; =fr =0 or §, x=0. By (32) and
(AS), one obtains in both cases f,=p3=0. A similar result is
obtained if the assumption f§, =0 is made.

=0 which implies $,=f,
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